GAMES103-Lecture 02 Math Background: Vector, Matrix and Tensor Calculus

Vector

Vector Norm

在这里插入图片描述Vector Norm可以用于求两点之间的距离

在这里插入图片描述

点乘

在这里插入图片描述

2.向量在线上的投影

在这里插入图片描述

3.定义点在平面的哪一侧

signed distance可用于碰撞检测
在这里插入图片描述

4. Particle-Sphere Collision

在这里插入图片描述

叉乘

可用于平行或不平行的判定
在这里插入图片描述

5.Triangle Normal and Area

得到的Normal遵循右手法则
既可以求Normal,也可以求三角形面积
在这里插入图片描述

6.Triangle inside/outside Test

判断点是否在三角形里面
前提假设:四个点在同一平面
在这里插入图片描述
在这里插入图片描述

7.Barycentric Coordinates(重心坐标)

在这里插入图片描述
早些时期Gouraud Shading会用到
在这里插入图片描述

9.Tetrahedral Volume

注:x1是三维列向量
在这里插入图片描述
所求出的体积是有符号的
在这里插入图片描述

10.Barycentric Weights(cont.)

类似于三角形的7.Barycentric Coordinates
在这里插入图片描述

11.Particle-triangle Intersection(点与三角形碰撞)

本质看:点与三角形构成的四面体的体积是否为0,即点面相交的位置(9.Tetrahedral Volume),再检查点是否在三角形内部(6.Triangle inside/outside Test)在这里插入图片描述

Matrix

Matrix:Definition

在这里插入图片描述

Matrix: Multiplication

A + A T A + A^T A+AT也是对称矩阵
在这里插入图片描述

Matrix: Orthogonality(正交矩阵)

每个向量点乘自己为1,点乘其他向量为0
在这里插入图片描述

Matrix: Transformation

正交矩阵与旋转相关
通过旋转矩阵A,将立方体进行旋转变化
[x y z] = I,因为 X = [ 100 ] T , Y = [ 010 ] T X=[1 0 0]^T,Y=[0 1 0]^T X=[100]T,Y=[010]T
A = [u v w],其中u,v,w是坐标系,是三个相互垂直的单位向量,因此A是一个正交矩阵
在这里插入图片描述
Scaling 缩放
在这里插入图片描述

Singular Value Decomposition(奇异值分解)

D是对角矩阵(奇异值),UV是正交矩阵
SVD的本质:任何一个线性的形变(linear deformation),本质上都可以分解为:旋转( V T V^T VT)-缩放( D D D)-旋转( U U U)
为什么要 V T V^T VT:为了缩放的时候沿着坐标轴缩放,例如下图例子,想要按照对角线缩放,所以先旋转将对角线对准坐标轴
在这里插入图片描述

Eigenvalue Decomposition(特征值分解)

D是对角矩阵,U是正交矩阵
Aα=λα,α是特征向量,λ是特征值
在这里插入图片描述

Symmetric Positive Definitenss(s.p.d)

对称且正定
如果一个矩阵是对角矩阵且对角元素都是正的,那么它必然是一个正定矩阵
给一个对称矩阵,根据特征值分解,分解出来的特征值也都是正的话,那么它必然也是正定的
如果对角上都是正的矩阵前后都乘以一个正交矩阵(相当于做旋转),不影响其正定性
在这里插入图片描述
如果一个矩阵是对角占优的,那么它一定是正定矩阵
在这里插入图片描述

Question:

在这里插入图片描述

Linear Solver

两个常用方法:直接法+迭代法
在这里插入图片描述

Direct Linear Solver

Ax=b,A=LU
LUx=b,令Ux=y
Ly=b
在这里插入图片描述
1.当A是稀疏的,L和U不是稀疏的
2.如果A是固定的,b是变化的,第一步factorize是需要做一次
3.难并行
在这里插入图片描述

Iterative Linear Solver(迭代法)

spectral radius(谱半径):特征值的最大绝对值
在这里插入图片描述
迭代法思想:
【【数值分析】速成!雅可比迭代|高斯赛德尔迭代】 在这里插入图片描述

在这里插入图片描述优点:
1.迭代法好实现
2.快速求大致解
3.并行性好
在这里插入图片描述

Tensor Calculus(张量微积分)

一阶导

在这里插入图片描述
散度:对角的和
curl:旋度
X = [x y z]
在这里插入图片描述

二阶导

在这里插入图片描述

泰勒展开:

正定与函数的二阶导存在某种关系
在这里插入图片描述
Quiz
多元单值函数的梯度是行向量
在这里插入图片描述

Example: A Spring

此处为什么多一个**()T**:参考42页ppt,对E(x)的梯度等于对E(x)偏导的转置
在这里插入图片描述
tangent stiffness 切线刚度
能量(Energy)求导得到力(Force),再求导得到Tangent stiffness
在这里插入图片描述

Example: A Spring with Two Ends

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值