Vector
Vector Norm
Vector Norm可以用于求两点之间的距离

点乘

2.向量在线上的投影

3.定义点在平面的哪一侧
signed distance可用于碰撞检测

4. Particle-Sphere Collision

叉乘
可用于平行或不平行的判定

5.Triangle Normal and Area
得到的Normal遵循右手法则
既可以求Normal,也可以求三角形面积

6.Triangle inside/outside Test
判断点是否在三角形里面
前提假设:四个点在同一平面


7.Barycentric Coordinates(重心坐标)

早些时期Gouraud Shading会用到

9.Tetrahedral Volume
注:x1是三维列向量

所求出的体积是有符号的

10.Barycentric Weights(cont.)
类似于三角形的7.Barycentric Coordinates

11.Particle-triangle Intersection(点与三角形碰撞)
本质看:点与三角形构成的四面体的体积是否为0,即点面相交的位置(9.Tetrahedral Volume),再检查点是否在三角形内部(6.Triangle inside/outside Test)
Matrix
Matrix:Definition

Matrix: Multiplication
A
+
A
T
A + A^T
A+AT也是对称矩阵

Matrix: Orthogonality(正交矩阵)
每个向量点乘自己为1,点乘其他向量为0

Matrix: Transformation
正交矩阵与旋转相关
通过旋转矩阵A,将立方体进行旋转变化
[x y z] = I,因为
X
=
[
100
]
T
,
Y
=
[
010
]
T
X=[1 0 0]^T,Y=[0 1 0]^T
X=[100]T,Y=[010]T
A = [u v w],其中u,v,w是坐标系,是三个相互垂直的单位向量,因此A是一个正交矩阵

Scaling 缩放

Singular Value Decomposition(奇异值分解)
D是对角矩阵(奇异值),UV是正交矩阵
SVD的本质:任何一个线性的形变(linear deformation),本质上都可以分解为:旋转(
V
T
V^T
VT)-缩放(
D
D
D)-旋转(
U
U
U)
为什么要
V
T
V^T
VT:为了缩放的时候沿着坐标轴缩放,例如下图例子,想要按照对角线缩放,所以先旋转将对角线对准坐标轴

Eigenvalue Decomposition(特征值分解)
D是对角矩阵,U是正交矩阵
Aα=λα,α是特征向量,λ是特征值

Symmetric Positive Definitenss(s.p.d)
对称且正定
如果一个矩阵是对角矩阵且对角元素都是正的,那么它必然是一个正定矩阵
给一个对称矩阵,根据特征值分解,分解出来的特征值也都是正的话,那么它必然也是正定的
如果对角上都是正的矩阵前后都乘以一个正交矩阵(相当于做旋转),不影响其正定性

如果一个矩阵是对角占优的,那么它一定是正定矩阵

Question:

Linear Solver
两个常用方法:直接法+迭代法

Direct Linear Solver
Ax=b,A=LU
LUx=b,令Ux=y
Ly=b

1.当A是稀疏的,L和U不是稀疏的
2.如果A是固定的,b是变化的,第一步factorize是需要做一次
3.难并行

Iterative Linear Solver(迭代法)
spectral radius(谱半径):特征值的最大绝对值

迭代法思想:
【【数值分析】速成!雅可比迭代|高斯赛德尔迭代】 
优点:
1.迭代法好实现
2.快速求大致解
3.并行性好

Tensor Calculus(张量微积分)
一阶导

散度:对角的和
curl:旋度
X = [x y z]

二阶导

泰勒展开:
正定与函数的二阶导存在某种关系

Quiz
多元单值函数的梯度是行向量

Example: A Spring
此处为什么多一个**()T**:参考42页ppt,对E(x)的梯度等于对E(x)偏导的转置

tangent stiffness 切线刚度
能量(Energy)求导得到力(Force),再求导得到Tangent stiffness

Example: A Spring with Two Ends


263

被折叠的 条评论
为什么被折叠?



