文章目录
笔记补充:
注:具体详细笔记看GAMES101-现代计算机图形学入门-闫令琪 课程笔记(自用),本文只是对部分内容的补充扩展
GAMES101 - Lecture 03 Transformation
简单易懂的罗德里格斯公式推导

我的理解,R是一个旋转矩阵,那么
v
v
v就是一个单位矩阵,而
k
×
v
k×v
k×v是叉乘改写为矩阵形式
Lecture 04 Transformation Cont.
R v i e w − 1 R^{-1}_{view} Rview−1矩阵是如何得到的

R
v
i
e
w
−
1
R^{-1}_{view}
Rview−1矩阵是如何得到的
你假设g是(X
g
×
t
_{g×t}
g×t,Y
g
×
t
_{g×t}
g×t,Z
g
×
t
_{g×t}
g×t),然后想一个变换矩阵能从到X轴即(1,0,0)变换过去,同理其他Y,Z轴,然后组合一下这三个变换矩阵就是这个Rview-1逆矩阵了
透视投影(Perspective Projection)公式推导
注:
0. camera于原点,看向-Z方向
1.在挤压的过程中,近平面永远不会发生变化。
2.在挤压过程中,远平面上的Z值不会发生变化。
3.挤压过程中,远平面的中心点也不会发生变化。
大体思想:
1.将frustum给挤压成一个长方体,也就是将远平面压的和近平面一个大小。
2.做一次正交投影,将长方体的中心移到原点并将其压缩成-1,1的正方体。
其中第二步是正交投影(已经学过),关键是如何实现第一步

求挤压矩阵frustum

附加题的理解:

具体计算求解:
选自b站课程评论区

Games101-lecture04 Transformation Cont

Lecture 06 Rasterization 2 (Antialiasing and Z-Buffering)
傅里叶变换(Fourier Transform)与图像的关系
反走样基本思路是先做模糊再做采样,为什么不是反过来
正确做法:

如果先采样的话,低频信息会混叠,混叠全砍掉就缺失大量信息
采样后,频谱已经无限复制搬移了,没办法简单的切掉混叠处了
Lecture 07 Shading 1 (Illumination, Shading and
Graphics Pipeline)
漫反射的强度计算(Lambertian (Diffuse) Shading)

k
d
k_d
kd是一个三维向量,分别是0~1,体现了对rgb的吸收情况,就可以在shading point定义颜色了
漫反射往四面八方反射的东西是一样的(均匀分布),与观测角度无关(在哪个方向观测的亮度是一样的),只与I和n的夹角有关
I
/
r
2
I/r^2
I/r2:多少能量到达shading point
m
a
x
(
0
,
n
∗
l
)
max(0,n*l)
max(0,n∗l):多少能量被吸收
环境光(Ambient Term)

大胆的假设,简化模型
环境光与v,l,n均无关系,是一个常数,作用就是保证没有地方完全是黑的,相当于自发光(常数),所有其他项加起来,提升一个亮度
Lecture 09 Shading 3 (Texture Mapping Cont.)
纹理太大/小情况
纹理太小
纹理太小时,一个纹理覆盖了多个像素
好几个像素对应一个纹素
纹理太大
因为一个像素对应一大块纹理, 这一大块纹理里的像素值是不同的(一直在变化)
当纹理大的时候,还需要在屏幕上进行显示,那么屏幕上一个像素就会覆盖多个纹素,而每一个纹素可能都不一样,所以单纯的对一个点采样就会出现走样的问题
Lecture 10 Geometry
符号距离函数(Signed Distance Function)讲解
Lecture 11 Geometry 2
B-splines(B样条)
B样条及其复杂


Lecture 16 Ray Tracing 4
蒙特卡罗积分公式
蒙特卡洛方法的理解、推导和应用

这个算的是f的定积分,对所有概率分布是一样的,除以p(x)就消除了因不同x采样概率不同导致的误差


f(x) = f(x) * p(x)/ p(x) 对f(x)积分,对应右边式子对p(x)积分,这是前面的期望表达式,即求解f(x)/p(x)的期望,用离散随机变量的期望方法求解,即求和后除以总采样数
(设g(x) = f(x) / p(x), 求g(x)的期望就是f(x)在[a, b]上的积分,再用大数定律得到n趋于无穷收敛于期望)
路径追踪(代码逻辑)


7707

被折叠的 条评论
为什么被折叠?



