GAMES101 (笔记补充)

笔记补充:

注:具体详细笔记看GAMES101-现代计算机图形学入门-闫令琪 课程笔记(自用),本文只是对部分内容的补充扩展

GAMES101 - Lecture 03 Transformation

简单易懂的罗德里格斯公式推导
在这里插入图片描述
我的理解,R是一个旋转矩阵,那么 v v v就是一个单位矩阵,而 k × v k×v k×v是叉乘改写为矩阵形式

Lecture 04 Transformation Cont.

R v i e w − 1 R^{-1}_{view} Rview1矩阵是如何得到的

在这里插入图片描述
R v i e w − 1 R^{-1}_{view} Rview1矩阵是如何得到的
你假设g是(X g × t _{g×t} g×t,Y g × t _{g×t} g×t,Z g × t _{g×t} g×t),然后想一个变换矩阵能从到X轴即(1,0,0)变换过去,同理其他Y,Z轴,然后组合一下这三个变换矩阵就是这个Rview-1逆矩阵了

透视投影(Perspective Projection)公式推导

注:
0. camera于原点,看向-Z方向
1.在挤压的过程中,近平面永远不会发生变化。
2.在挤压过程中,远平面上的Z值不会发生变化。
3.挤压过程中,远平面的中心点也不会发生变化。
大体思想:
1.将frustum给挤压成一个长方体,也就是将远平面压的和近平面一个大小。
2.做一次正交投影,将长方体的中心移到原点并将其压缩成-1,1的正方体。
其中第二步是正交投影(已经学过),关键是如何实现第一步
在这里插入图片描述

求挤压矩阵frustum

请添加图片描述

附加题的理解:

在这里插入图片描述
具体计算求解:
选自b站课程评论区
在这里插入图片描述
Games101-lecture04 Transformation Cont

在这里插入图片描述

Lecture 06 Rasterization 2 (Antialiasing and Z-Buffering)

傅里叶变换(Fourier Transform)与图像的关系

反走样基本思路是先做模糊再做采样,为什么不是反过来

正确做法:
在这里插入图片描述

如果先采样的话,低频信息会混叠,混叠全砍掉就缺失大量信息
采样后,频谱已经无限复制搬移了,没办法简单的切掉混叠处了

Lecture 07 Shading 1 (Illumination, Shading and

Graphics Pipeline)

漫反射的强度计算(Lambertian (Diffuse) Shading)

在这里插入图片描述
k d k_d kd是一个三维向量,分别是0~1,体现了对rgb的吸收情况,就可以在shading point定义颜色了
漫反射往四面八方反射的东西是一样的(均匀分布),与观测角度无关(在哪个方向观测的亮度是一样的),只与I和n的夹角有关
I / r 2 I/r^2 I/r2:多少能量到达shading point
m a x ( 0 , n ∗ l ) max(0,n*l) max(0,nl):多少能量被吸收

环境光(Ambient Term)

在这里插入图片描述

大胆的假设,简化模型
环境光与v,l,n均无关系,是一个常数,作用就是保证没有地方完全是黑的,相当于自发光(常数),所有其他项加起来,提升一个亮度

Lecture 09 Shading 3 (Texture Mapping Cont.)

纹理太大/小情况

纹理太小

纹理太小时,一个纹理覆盖了多个像素
好几个像素对应一个纹素

纹理太大

因为一个像素对应一大块纹理, 这一大块纹理里的像素值是不同的(一直在变化)
当纹理大的时候,还需要在屏幕上进行显示,那么屏幕上一个像素就会覆盖多个纹素,而每一个纹素可能都不一样,所以单纯的对一个点采样就会出现走样的问题

Lecture 10 Geometry

符号距离函数(Signed Distance Function)讲解

Lecture 11 Geometry 2

B-splines(B样条)

B样条及其复杂
在这里插入图片描述
在这里插入图片描述

Lecture 16 Ray Tracing 4

蒙特卡罗积分公式

蒙特卡洛方法的理解、推导和应用
在这里插入图片描述
这个算的是f的定积分,对所有概率分布是一样的,除以p(x)就消除了因不同x采样概率不同导致的误差
在这里插入图片描述
在这里插入图片描述
f(x) = f(x) * p(x)/ p(x) 对f(x)积分,对应右边式子对p(x)积分,这是前面的期望表达式,即求解f(x)/p(x)的期望,用离散随机变量的期望方法求解,即求和后除以总采样数
(设g(x) = f(x) / p(x), 求g(x)的期望就是f(x)在[a, b]上的积分,再用大数定律得到n趋于无穷收敛于期望)

路径追踪(代码逻辑)

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值