参考文章:
这个视频讲的非常非常详细:【较真系列】讲人话-NeRF全解(原理+代码+公式)
大体定义

输入输出
前处理:图片->5D向量
后处理:4D->2D图片



相机模型

体渲染

NeRF假设
物体是自发光的粒子

例子的采集
已知有粒子推到图片上:一个粒子沿着相机的方向打到图片上

现在由图片得到粒子
遮挡那么那个位置的透明度为0,导致后面所有采样点的颜色强度衰减为0了
一个像素就有一条射线,像素看作是这条射线上无数发光点的总和

从图片获得射线
蓝色是物理成像平面
红色是相机坐标系

粒子的采样–光线代码

在400 * 400的射线里选取了1024个射线,随机选择一些像素



回答关于输入输出的问题


模型结构

X=[x,y,z],L=10,也就是sin10个,cos10个,所以x位置编码后就有20维度
颜色跟方向有关,密度跟方向无关,密度只与本身的位置有关系
观测方向不应当影响密度,但是会改变颜色

第五层会再加入(x,y,z):256+63
倒数第二层会加入direction信息:256+27

Loss怎么算
自监督方式

如何将粒子颜色求和(体渲染-连续积分)
sigma(s)是在s点处的密度,模型得到的输出,密度越大,越容易被阻拦
C(s)在s点处的颜色,模型得到的输出
T(s)表示在s点之前光线没有被阻拦的概率


离散积分



回答输出的问题

重要性采样
通过密度进行二次采样


总结:通过粗模型输出得到一个概率,然后通过这个概率去重新在这条光线上进行采样,这个采样更符合物体的分布
一个像素对应的相机原点,两点连接起来的射线,采样,取64个粒子,根据64个粒子的密度来判断哪部分是有效区域,再进行重复采样,得到128个新的粒子,输入

推理
4是RGB和Sigma

总结
3D重建:CG中很多渲染方式通过神经网络或者机器学习去拟合,然后生成图片


576

被折叠的 条评论
为什么被折叠?



