Diffusion Model && Stable Diffusion(笔记)

参考资料:

扩散模型 - Diffusion Model【李宏毅2023】
深入浅出扩散模型(Diffusion Model)系列:基石DDPM(模型架构篇),最详细的DDPM架构图解
深入浅出扩散模型(Diffusion Model)系列:基石DDPM(人人都能看懂的数学原理篇)
深入浅出完整解析Stable Diffusion(SD)核心基础知识
stable diffusion原理解读通俗易懂,史诗级万字爆肝长文,喂到你嘴里

DDPM架构

在这里插入图片描述

模型如何拥有产生逼真图片的能力

Denoise模型功能

通过Denoise将一个噪音图一步步生成为目标图像
在这里插入图片描述
Denoise实际功能是通过一个图x+时间戳,生成该图中噪音点y,然后用原图x-y得到去掉噪音点的图
在这里插入图片描述

Denoise模型如何训练

Denoise模型的能力是根据图x和时间戳,识别x中的噪音点。那么训练就是反过来
x(原图)+噪音y(随机高斯分布得到)=噪音图z
现在将z和时间戳作为数据,然后将噪音y作为标准答案,然后巡训练模型
在这里插入图片描述

考虑进文字

就是输入的时候多输入一个文字信息,训练的时候也是多输入一个文字信息
在这里插入图片描述

在这里插入图片描述

文生图流程(Stable Diffusion)

在这里插入图片描述

### 安装运行 Stable Diffusion 模型 #### 选择合适的操作系统版本 对于 Windows、Linux macOS 平台,Stable Diffusion WebUI 均有对应的版本提供支持[^2]。 #### 使用 Colab 进行简易部署 一种简便的方法是在 Google Colab 中启动 Stable Diffusion WebUI。这不需要本地安装任何软件,仅需访问项目 GitHub 页面,选取适合需求的 Colab 笔记本版本,并通过点击 "Open in Colab" 来开启笔记本,在其中依照指引完成环境搭建与模型加载操作后即可进入 WebUI 界面开始创作工作流程[^4]。 #### 本地安装步骤概览 如果偏好于本地执行,则可以考虑如下方案: - **准备依赖项** - 更新 Python 至最新版。 - 利用 pip 或 conda 工具来获取所需的库文件集合。 - **克隆仓库** ```bash git clone https://github.com/AUTOMATIC1788/Auto-GPTQ-webui.git cd Auto-GPTQ-webui ``` - **创建虚拟环境并激活** ```bash conda create --name sd python=3.9 conda activate sd pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu116 pip install -r requirements.txt ``` - **下载预训练权重** 可以从 Hugging Face 或者其他公开资源处取得官方发布的 checkpoint 文件。 - **启动服务端口监听** 执行 `webui-user.bat` (Windows) 或者 `./webui.sh` (Unix-like),随后浏览器会自动跳转至指定地址显示图形化交互面板。 ```python import gradio as gr from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler model_id = "stabilityai/stable-diffusion-2-base" scheduler = EulerAncestralDiscreteSampler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler) def generate_image(prompt): image = pipe(prompt).images[0] return image gr.Interface(fn=generate_image, inputs="text", outputs="image").launch() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值