- 博客(1214)
- 收藏
- 关注
原创 V2VNet论文解读
V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and Prediction
2024-12-15 16:17:26
220
原创 Attentive Fusion论文精读
OPV2V: An Open Benchmark Dataset and Fusion Pipeline for Perception with Vehicle-to-Vehicle Communication
2024-12-15 16:08:22
545
原创 Efficient Vehicular Collaborative Perception Based on Saptial-Temporal Feature Compression(论文精读)
尽管协同感知具有内在优势,但现有的车辆网络在满足合作车辆之间快速高效数据传输的严格要求方面面临着巨大挑战。一个突出的障碍在于车辆网络内通信带宽的固有局限性。随着积极参与网络的车辆数量激增,每辆车的带宽分配会相应下降。协同感知严重依赖车辆之间的实时数据交换。然而,受限的带宽导致数据传输速度变慢和延迟增加,导致车辆接收到过时的感知数据。不可避免地,这种情况会严重影响感知性能的准确性。因此,有效减少传输数据量对于确保实时协作和保持感知性能的准确性至关重要。此外,车辆网络的动态性质增加了额外的复杂性。
2024-12-14 22:29:41
566
原创 Collaborative Perception in Autonomous Driving: Methods, Datasets and Challenge(协同感知论文综述)
具体而言,在特征 - 注意力共生估计(FASE)模块中,双分支共享包含实时特征和历史特征的相同输入,从先前的特征 / 注意力中学习相互作用,然后依次对特征 / 注意力进行估计。为了对不同类型智能体之间的相互作用进行建模,V2X - ViT 提出了一种新颖的异构多智能体注意力模块(HMSA),用于学习车对车(V2V)和车对基础设施(V2I)之间的不同关系。具体来说,他们设计了一种定制的移动块自助法来估计模型和数据的不确定性,并设计了一个精心构建的损失函数来直接捕捉数据的不确定性。
2024-12-14 15:28:49
1036
原创 ERMVP(2024 CVPR 协同感知论文解读)
该范式包括两个关键组件:第一个是基于注意力的特征融合模块,该模块在局部和全局注意力之间交替,以融合来自不同车辆的异构信息。二是精度增强特征交互策略,利用以自我为中心的特征固有的精确位置信息来增强融合特征提供的丰富语义信息。该策略同时考虑了类间和类内冗余关系,从冗余特征中抽象出一组精炼的特征向量,使用较少的通信开销实现高效通信。ERMVP,一种具有通信效率和协作鲁棒性的多车感知方法,基于激光雷达的复杂驾驶场景下的协同3D目标检测任务。V2VNet:结合了一个图神经网络来融合来自不同代理的数据,[38]
2024-12-13 15:50:07
378
原创 Carla自带样例:automatic_control.py解析
如果 actor.type_id 是 “vehicle_car_tesla”,最终 name 会是 “Car Tesla”例如,对于 “ClearNoon”,函数会返回对应的天气预设值和 “Clear Noon” 这样可读的名称。这个函数在自动驾驶模拟器(如Carla)中用于精确选择要生成的车辆或演员蓝图,提供了灵活的筛选机制。从演员的类型ID中提取一个更友好、可读的显示名称。根据传入的过滤器(filter)筛选蓝图。用于获取(Actor)显示名称的函数。将预设的驼峰命名转换为更可读的格式。
2024-12-11 22:04:52
459
原创 协同感知资料汇总
【CV论文精读】【协同感知综述】Collaborative Perception for Autonomous Driving :Current Status and Future Trend最新最全总结!自动驾驶Occupancy感知综述:信息融合视角我们研究自动驾驶的 3D 占用感知
2024-12-10 12:43:35
125
原创 3D Gaussian Splatting综述 论文笔记
第二篇综述:相对比较全面,推荐精读 3D Gaussian as a New Vision Era: A Survey。第三篇综述:涵盖了更多最新进展 Recent Advances in 3D Gaussian Splatting。首篇综述:A Survey on 3D Gaussian Splatting。
2024-11-27 23:06:10
638
1
原创 Carla学习日志
车辆工程本科小白,如何在Carla中运行仿真,构建车辆行人地图场景模型并且掌握基本的环境感知算法? - Here-Kin的回答 - 知乎https://www.zhihu.com/question/455478599/answer/2315207702CARLA DocumentationPython API reference小飞自动驾驶系列分享
2024-11-27 15:15:14
172
原创 CLIP论文&&CLIP 改进工作串讲
CLIP模型改动的三点1.改动最小,目前的图像和文本经过CLIP的预训练模型(CLIP预训练数据集比较大,直接使用预训练的参数非常好),得到一个特别好的特征。然后用这个特征做一下点乘或拼接(融合),之前的模型不动,用一个更好的特征加强之前模型的训练。2.知识蒸馏,将CLIP模型作为teacher网络,生成伪标签。帮助现有的模型收敛更快。3.不借鉴CLIP的预训练参数,而是借用CLIP这种多模态的对比学习思想(图像文本对,对角线GT)。
2024-11-07 20:55:37
705
原创 Fast Simulation of Mass-Spring Systems in Rust 论文阅读
这篇论文通过引入弹簧方向的辅助变量,并采用块坐标下降法解决了传统隐式欧拉法中速度慢的问题,成功实现了弹簧质点系统的快速仿真。该方法特别适用于实时应用,并且在低迭代次数下也能得到较好的视觉效果。Md2qdt2fqMdt2d2qfq( M ) 是质量矩阵,表示系统中各质点的质量。( q(t) ) 是位置向量,表示质点的位置。( f(q) ) 是作用在质点上的力,通常是位移 ( q ) 的函数。第一行的式子为什么可以等于L和J,证明如下:忽略diTd。
2024-10-23 12:14:59
1354
1
原创 粗读论文,提取创新点
文章目录A Mechanics-Based Nonrigid Registration Methodfor Liver Surgery Using Sparse Intraoperative Data创新点介绍:传统的有限元法(FEM)通常需要手动设置边界条件,定义肝脏的固定点(如不可移动的部分)和施加的外力。但该论文中的方法通过建立一个迭代的非线性优化框架,自动地从稀疏术中数据中推断出合适的边界条件和力的位置,而不是依赖人工设置。通过修改刚度矩阵并引入软弹簧,算法能够自动确定施加力的位置和大小
2024-10-09 11:29:18
368
原创 Diffusion Model && Stable Diffusion(笔记)
Denoise实际功能是通过一个图x+时间戳,生成该图中噪音点y,然后用原图x-y得到去掉噪音点的图。Denoise模型的能力是根据图x和时间戳,识别x中的噪音点。现在将z和时间戳作为数据,然后将噪音y作为标准答案,然后巡训练模型。就是输入的时候多输入一个文字信息,训练的时候也是多输入一个文字信息。通过Denoise将一个噪音图一步步生成为目标图像。x(原图)+噪音y(随机高斯分布得到)=噪音图z。
2024-09-22 01:16:57
384
原创 图形零散知识点整理
再议奇异值分解SVD,矩阵的极分解(polar decomposition)2.SDF(signed distance field)SDF(signed distance field)基础理论和计算
2024-08-30 21:47:59
291
原创 图形学论文笔记
【深入浅出 Nvidia FleX】(1) Position Based Dynamics最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码最简化的PBD(基于位置的动力学)算法详解-论文原理讲解和太极代码基于XPBD的物理模拟一条龙:公式推导+代码+文字讲解(纯自制)超简单的shape matching算法模拟刚体运动–原理与代码(太极taichi)实践【物理模拟】最简单的shape matching的原理与实践
2024-08-22 09:57:23
602
1
原创 games101 实验hw2(作业2)
我们可以用 super-sampling来解决这个问题,即对每个像素进行 2 * 2 采样,并比较前后的结果 (这里并不需要考虑像素与像素间的样本复用)。最后,如果你实现正确的话,你得到的三角形不应该有不正常的黑边。因此在引用hw1中写的get_projection_matrix时,这里的abs要改成-1*zNear的写法,不然图像会反转过来(因为z已经是正的了,abs(z)不会有任何影响,而在hw1中z是负数,所以-1和abs效果是一样的)分别求AB,AC,BC,AP,BP,CP的向量,然后求叉乘。
2024-04-29 17:47:50
1180
1
原创 GAMES101-现代计算机图形学入门-闫令琪 课程笔记(自用)
【GAMES101-现代计算机图形学入门-闫令琪】参考笔记资料:Games101学习笔记汇总一篇搞定!GAMES101现代计算机图形学入门(全)Games101图形学入门笔记课程笔记
2024-04-20 23:30:02
393
原创 GAMES103-作业1-刚体模拟(个人解读)
有Rigid_Bunny和Rigid_Bunny_by_Shape_Matching两个脚本文件步骤:1.受重力因素更新速度2.受外力因素更新速度3.计算Inertia惯性张量(公式见上图)4.计算碰撞(代码中用的Collision Impulse),调用Collision函数5.更新v和w(角速度)6.通过动态调整阈值(punish_threshold)来控制速度和角速度的增长速度,以保持运动的稳定性7.更新位置和方向if (!if(!
2024-04-20 11:40:10
729
原创 GAMES103-Lecture 04 Rigid Body Contacts (Lab 1)
因为一个模型的v是质心的速度,vi是模型上某一点的速度。我们不能直接去修改模型上某一点vi的速度,所以要借助j去修改v和w,达到修改vi的目的,求出整个兔子其他点的变化(即修改整体的运动状态)式子的含义:希望重构后的点(正方形的点)与梯形的点尽可能的近,换句话:点所重构的距离尽可能小,所有点收的尽可能少。同一个物体所能产生的旋转不仅仅跟力矩大小有关,跟方向也有关,产生的抵抗是不一样的(如下图,右侧旋转更快),求法向量和切向量的速度,然后关于摩擦的系数a计算,求新的两个方向的速度,然后加起来(向量的相加)
2024-04-16 18:22:40
987
原创 GAMES103-Lecture 02 Math Background: Vector, Matrix and Tensor Calculus
signed distance可用于碰撞检测。
2024-04-15 12:53:50
623
原创 GAMES103-基于物理的计算机动画入门 笔记
Lecture 02 Math Background: Vector, Matrix and Tensor Calculus
2024-04-15 12:09:21
263
原创 自己准备配机
主板+CPU i5-12400f散+华硕h610ma (1329 pdd)存储: 雷克沙NM610 PRO 1T (398 pdd)内存:金百达黑爵3200 16g (185 pdd)显卡:电竞叛客rtx4060 (pdd 2198)风扇:创世神14cm拆机风扇x4 (80 咸鱼)散热:九州风神玄冰400v5 (65 pdd)机箱:先马朱雀air黑 (149 pdd)电源:鑫谷650w (pdd 299)总共:4743(主机)+500屏幕。显示器—留出500元左右预算。wifi+蓝牙:30 咸鱼。
2024-04-07 15:29:38
189
原创 fdu复试面试准备内容
深度学习相关知识点内补充学习(自用)机器学习深度学习八股【RePo】机器学习八股文全连接层(Fully Connected Layer)概述图解机器学习算法 | 从入门到精通系列教程(机器学习通关指南·完结)
2024-03-06 23:30:15
526
原创 VIT(vision transformer)+相关项目
因为所有的token都在跟其他token做交互信息,因此认为cls embdding能够从别的这些embedding里头去学到有用的信息,从而可以只根据cls的输出做一个判断。
2024-03-04 23:13:39
1025
原创 (pytorch)基于Transformer的相关项目
基于Transformer的翻译模型基于Transformer的分类模型基于Transformer的对联模型
2024-02-06 11:38:18
247
原创 Transformer学习笔记(下),手写实现Transformer
x语言的所有词汇就7个词,说任何话都是用这7个词采样概率是模仿自然语言中有些词经常被说到(热门词),有些词很难被说到(生僻词)以概率在词汇表中进行采样,采一个随机长度transformer的作用是将x翻译成y,也就说y和x之间要有一定的关联性,y可以根据x推导出来的x和y的关联规则:y当中的每一词都是x当中的词进行逆序之后的结果,小写字母变大写字母,y当中的数字是用9减去x当中的数字得到的虚线的箭头表明y当中的第一位取决于x的最后一位(9-x),即y当中第一位和第二位是相同的。
2024-01-31 11:44:38
2106
原创 基于pytorch的ResNet垃圾图片分类
步骤:搭建模型->搭建训练函数->搭建验证函数->搭建数据加载器->损失函数与优化器->开始训练。需要排除图像宽高过大和过小的数据(图像高宽均保持在200到2000以内)需要排除图像宽高比例不协调的数据(图像宽高比例低于0.5的数据)对样本数少于平均数的进行数据增强,样本数多于平均数的不进行处理。在txt中,左侧为图片路径,右侧为标签(从0开始计算)类别和类别之间的数据不均衡,利用数据增强来加强数据。为了让样本数更均衡,对数据量过多的数据进行下采样。增强方式:水平翻转,垂直翻转。label等于10个数字。
2024-01-17 13:56:13
1083
原创 ResNet学习&&论文精读&&手搓代码&&相关项目
在ResNet中,(aa): Identity() 表示残差块中的 “aa” 部分,它的作用是恒等映射(identity mapping)。nn.Identity() 是 PyTorch 中的一个模块,它的作用是进行恒等映射,即将输入直接返回,不进行任何变换。总之,(aa): Identity() 的作用是创建一个跳跃连接,允许梯度直接通过残差块,促进了网络的训练。f(x)=x+g(x),此处+为逐元素的相加(x和g(x)的结构是相同的)残差块使得很深的网络更加容易训练,甚至可以训练一千层的网络。
2024-01-15 16:23:52
1030
原创 深度学习相关知识点内补充学习(自用)
具体来说,如果 X 的形状是 (a, b, c, d),那么 torch.cat((X, X+1), 1) 将沿着第二维度(即 b 的方向)连接这两个张量。与stack相比:torch.stack 会在指定的维度上创建一个新的轴,因此结果张量的维度会比输入张量的维度多一个。在这个例子中,如果 X 是形状为 (a, b, c, d) 的张量,那么连接后的结果形状将是 (a, 2b, c, d)。torch.cat((X, X+1), 1) 是 PyTorch 中用于在指定维度上拼接(连接)张量的函数。
2024-01-11 22:25:33
812
原创 Transformer学习笔记(上)
传统的自回归翻译模型(如基于循环神经网络的模型)会一个一个地生成目标语言的单词,每个单词生成的时候都会依赖于前面已生成的单词。全连接层的计算过程可以表示为 Y = X * W + b,其中 X 是输入数据的向量,W 是权重矩阵,b 是偏置向量,Y是输出数据的向量。在自回归模型中,模型生成序列的每个元素时都依赖于前面已生成的元素,因此生成是逐步的、依次进行的。总之,全连接层是神经网络中的一种层类型,每个输入神经元与输出层的每个神经元都有连接,通过权重和偏置项进行线性组合,将输入数据映射到最终的输出空间。
2024-01-10 14:02:56
1102
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅