剑指offer之青蛙跳台阶

本文详细解析了青蛙跳台阶问题的解决思路,包括递归、组合数和斐波那契数列三种方法,并对比了各自的优缺点及运行效率。最终提供了一种简洁高效的斐波那契数列解法。

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果)。

求解思路

刚开始是想要通过递归模拟求解,结果超时了。但是这样肯定能求出解来,不过计算了大量重复的代码,复杂度应该是指数级的。

第一次想的正确的思路应该是:
先计算出最多能放几个2步,假设是n个
i从1到n,计算i个2步的情况下步法的组合数,所有组合数累加到sum上
sum+1是最终解,因为全是1的情况也要考虑
复习排列组合的公式:
Cnk=n(n−1)(n−2)⋯(n−k+1)(n−k)(n−k−1)⋯2×1C_{n}^{k}=\frac{n(n−1)(n−2)⋯(n−k+1)}{(n−k)(n−k−1)⋯2×1}Cnk=(nk)(nk1)2×1n(n1)(n2)(nk+1)
提交上述代码后,显示时间是3ms

但是,结合前一题的斐波那契数列和其他dalao的题解,本题目实际上是一个斐波那契数据列的思路!!!更加简介的思路如下:

  • 只有一个台阶,步法为1,;有两个台阶步法是2
  • 假设走到第那个台阶花费了F(n)F(n)F(n)步;如果之前的一步走了一个台阶,那么之前的步骤是F(n−1)F(n-1)F(n1)步;如果之前的一部走了两个台阶,那么之前的步骤是F(n−2)F(n-2)F(n2)步;所以F(n)=F(n−1)+F(n−2)F(n)=F(n-1)+F(n-2)F(n)=F(n1)+F(n2)

因此,这种方式比排列组合的思路要简单得多,而且不易出错!!最终版本是这个。

解题代码

#include <bits/stdc++.h>
using namespace std;
// 这是超时的,但是结果正确
class Solution_failed {
  public:
    int jumpFloor(int number) {
        int sum = 0;
        if(number == 0) {
            return 1;
        } else if(number < 0) {
            return 0;
        } else {
            sum += jumpFloor(number - 1);  // 跳一个
            sum += jumpFloor(number - 2);  // 跳两个
            return sum;
        }
    }
};

// 这是AC的代码,使用了组合
class Solution_comp {
  public:
    int jumpFloor(int number) {
        // 只要确定了2步的位置,1步的位置随便插入
        int n = number / 2;
        int sum = 1;
        for(int i = 1; i <= n; ++i) {
            // 注意,每增加一个2,总的空位置就要少一个,
            int t = comp(number - i, i);
            sum += t;
        }
        return sum;
    }
    // 计算组合数
    int comp(int n, int k) {
        long long up = 1, down = 1;
        for(int i = n; i >= n - k + 1; i--) {
            up *= i;
        }
        for(int j = k; j >= 1; j--) {
            down *= j;
        }
        return up / down;
    }
};

// 最终提交版本
class Solution {
  public:
    int jumpFloor(int number) {
        if(number == 1) {
            return 1;
        }
        if(number == 2) {
            return 2;
        }
        int a = 1, b = 2;
        for(int i = 3; i <= number; ++i) {
            int t = a;
            a = b;
            b = t + b;
        }
        return b;
    }
};
// 以下是测试代码
int main() {
    Solution_failed sof;
    Solution_comp so;
    Solution so;
    for(int i = 1; i <= 10; ++i) {
        cout << sof.jumpFloor(i) << "," << sc.jumpFloor(i) \
             << "," << so.jumpFloor(i) << endl;
    }
    return 0;
}

运行时间上,数列思路和组合思路都是3ms,而实际上,应该是数列思路更快才对。。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值