机器学习_2_监督学习和非监督学习

监督学习和非监督学习

无论是监督学习还是非监督学习都是机器学习的一种训练方法。

NB: 分类和回归就是监督学习的例子;聚类就是非监督学习的例子

 

2.1 什么是监督学习?

监督学习需要有明确的目标,很清楚自己想要什么结果。比如:按照“既定规则”来分类、预测某个具体的值…

监督并不是指人站在机器旁边看机器做的对不对,而是下面的流程:

  1. 选择一个适合目标任务的数学模型
  2. 先把一部分已知的“问题和答案”(训练集)给机器去学习
  3. 机器总结出了自己的“方法论”
  4. 人类把”新的问题”(测试集)给机器,让他去解答

上面提到的问题和答案只是一个比喻,假如我们想要完成文章分类的任务,则是下面的方式:

  1. 选择一个合适的数学模型
  2. 把一堆已经分好类的文章和他们的分类给机器
  3. 机器学会了分类的“方法论”
  4. 机器学会后,再丢给他一些新的文章(不带分类),让机器预测这些文章的分类

 

2.2 什么是无监督学习?

下面通过跟监督学习的对比来理解无监督学习:

  1. 监督学习是一种目的明确的训练方式,你知道得到的是什么;而无监督学习则是没有明确目的的训练方式,你无法提前知道结果是什么
  2. 监督学习需要给数据打标签;而无监督学习不需要给数据打标签
  3. 监督学习由于目标明确,所以可以衡量效果;而无监督学习几乎无法量化效果如何

监督学习对比无监督学习

 

无监督学习的使用场景

 

案例1:发现异常

有很多违法行为都需要”洗钱”,这些洗钱行为跟普通用户的行为是不一样的,到底哪里不一样?

如果通过人为去分析是一件成本很高很复杂的事情,我们可以通过这些行为的特征对用户进行分类,就更容易找到那些行为异常的用户,然后再深入分析他们的行为到底哪里不一样,是否属于违法洗钱的范畴。

通过无监督学习,我们可以快速把行为进行分类,虽然我们不知道这些分类意味着什么,但是通过这种分类,可以快速排出正常的用户,更有针对性的对异常行为进行深入分析。

借助无监督学习发现异常数据

 

案例2:用户细分

这个对于广告平台很有意义,我们不仅把用户按照性别、年龄、地理位置等维度进行用户细分,还可以通过用户行为对用户进行分类。

通过很多维度的用户细分,广告投放可以更有针对性,效果也会更好。

借助无监督学习细分用户

 

案例3:推荐系统

大家都听过”啤酒+尿不湿”的故事,这个故事就是根据用户的购买行为来推荐相关的商品的一个例子。

比如大家在淘宝、天猫、京东上逛的时候,总会根据你的浏览行为推荐一些相关的商品,有些商品就是无监督学习通过聚类来推荐出来的。系统会发现一些购买行为相似的用户,推荐这类用户最”喜欢”的商品。

 

借助无监督学习给用户做推荐

参考:监督学习--回归--芝麻信用

参考:一文看懂无监督学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值