【能源行业案例】借助TeeChart图表库,将地质数据转化为清晰的见解

将地质数据转化为清晰的见解

GeoLogismiki是一家总部位于希腊的公司,致力于为地质学家、工程师和环境专业人士开发专用软件。他们的应用程序可以帮助用户可视化钻孔、创建地层柱状图、监测地下水位以及分析土壤和岩石数据。自2007年以来,GeoLogismiki一直使用TeeChart Pro VCL/FMX图表库将复杂的数据转化为清晰、交互式的图形。

TeeChart Pro VCL/FMX 试用版下载

主要产品

  • CPeT-IT:锥形贯入试验 (CPT) 数据的解释和呈现,与 Peter Robertson 博士合作开发。
  • CLiq:主要基于CPT数据的土壤液化评估。
  • LiqSVs、SPAS 2019、StoneC、SteinP 3DT、BLogPro、SPTCorr:涵盖了其他岩土工程任务,例如基于 SPT 的液化、三维基础沉降、碎石桩加固、钻孔记录创建等。
    这些工具为工程师提供了强大的、特定领域的软件,用于分析地下数据、生成报告、可视化结果并做出明智的设计决策。

TeeChart 是 GeoLogismiki 可视化工具的核心。

TeeChart 成为其软件分析和报告模块的可视化核心:

  • 钻孔和地层测井:多轨垂直图显示岩性、样品深度和实验室结果。每条轨道均使用 TeeChart 的灵活坐标轴同步深度和比例尺。
  • 环境监测:时间序列图显示水位波动和化学参数,并近乎实时更新。
  • 统计分析:内置直方图、散点图和箱线图系列,可快速可视化实验室结果。
  • 横截面图和等高线图: TeeChart 的 2D/3D 曲面和等高线功能可可视化高程和值分布。

CPeT-IT – 圆锥贯入试验 (CPT) 判读软件


使用 TeeChart 的好处

通过集成 TeeChart,GeoLogismiki 可获得以下益处:

  • 开箱即用的丰富可视化功能——无需构建自定义绘图逻辑,即可利用数百种图表类型和视觉样式。
  • 交互式用户体验——使用该软件的工程师可以受益于缩放、平移、工具提示、交互式选择等功能,从而提高工作效率和洞察力。
  • 更快的开发和维护——由于图表由成熟的库处理,因此上市时间更快;维护负担更低。
  • 产品间的一致性——其多样化的工具集(CPT、液化、结算、日志)可以使用相同的视觉/图表标准,因此用户可以获得一致的用户界面。
  • 导出和报告功能——集成可视化效果可以导出为客户交付物;适用于工程工作流程。
  • 可扩展到 3D 或高级图表类型——如果需要更复杂的可视化效果(3D 曲面、交互式仪表板、GIS 叠加层),TeeChart 也支持这些。
  • 面向未来——使用得到良好支持的第三方库意味着 Delphi/C++Builder 发展时遇到的意外更少;他们可以可靠地升级 TeeChart 版本。

CLiq – CPT土壤液化分析软件

示例工作流程

工程师上传钻孔和实验室数据,GeoLogismiki 处理数据区间,TeeChart 生成同步的多轨测井曲线。只需单击一下,即可将图表导出为高分辨率矢量图,用于最终报告。这种自动化和清晰呈现的结合,有助于工程师更快地交付精准、专业的成果。

结论

近二十年来,GeoLogismiki 一直信赖 TeeChart,利用其精准可视化地质和环境数据。通过运用 TeeChart 先进的图表功能,GeoLogismiki 不断提升岩土工程勘察的效率和准确性,助力工程师打造更安全、更可靠的基础设施项目。

标题人事档案管理系统设计与实现研究AI更换标题第1章引言介绍人事档案管理系统的研究背景、意义、国内外研究现状以及论文的方法和创新点。1.1研究背景与意义分析人事档案管理在企业中的重要性及系统开发的必要性。1.2国内外研究现状概述国内外人事档案管理系统的研究进展和现状。1.3研究方法及创新点阐述本文的研究方法和在系统设计上的创新点。第2章相关理论介绍人事档案管理系统设计的相关理论。2.1档案管理理论阐述档案分类、存储、检索等基本理论。2.2信息系统开发理论介绍信息系统开发的基本流程、方法和技术。2.3数据库管理理论讨论数据库设计、数据安全与备份等理论。第3章人事档案管理系统设计详细介绍人事档案管理系统的设计方案和实现过程。3.1系统需求分析分析系统的功能需求、性能需求和用户需求。3.2系统架构设计给出系统的整体架构、模块划分和交互流程。3.3数据库设计设计数据库结构,包括表结构、字段设置和关系模型。第4章系统实现与测试阐述人事档案管理系统的实现过程和测试方法。4.1系统开发环境与工具介绍系统开发所使用的环境和工具。4.2系统实现过程详细描述系统各个模块的实现过程和关键代码。4.3系统测试与优化对系统进行功能测试、性能测试和安全测试,并进行优化。第5章研究结果与分析呈现人事档案管理系统的实验分析结果。5.1系统功能实现情况介绍系统各项功能的实现情况和效果。5.2系统性能评估从响应时间、吞吐量等指标评估系统性能。5.3对比方法分析将本系统与其他类似系统进行对比分析,突出优势。第6章结论与展望总结本文的研究成果,并展望未来的研究方向。6.1研究结论概括本文的主要研究结论和系统实现效果。6.2展望指出系统存在的不足和未来改进的方向。
提供了关于时间序列分析与预测的宝贵资源,特别聚焦于**自回归积分滑动平均模型(ARIMA)**及其应用。对于那些希望深入理解并实践时间序列建模的学者、研究人员以及数据分析爱好者来说,这是一个不可或缺的学习材料。本资源不仅包括了详细的理论讲解,涵盖了时间序列分析的基础,如移动平均(MA)、自回归(AR)、指数平滑等关键概念,而且通过具体的ARIMA模型解析,搭配MATLAB编程实现实例,帮助用户从理论到实践全面掌握这一重要统计工具。 内容概览 理论讲解: 深入浅出地介绍了时间序列分析的基本原理,重点阐述ARIMA模型的构建步骤,包括如何识别模型的参数(p,d,q),以及其在处理非平稳数据中的作用。 MATLAB代码实现: 提供了多个ARIMA模型的MATLAB实现示例,这些代码覆盖了从数据准备、模型拟合、诊断检验到预测的全过程,是学习如何利用MATLAB进行时间序列分析的实用工具。 实例分析: 包括不同行业或领域的实际案例研究,展示如何应用ARIMA及其它时间序列方法解决真实世界的数据预测问题,增强理解和应用能力。 文件结构 时间序列模型ARIMA的讲解与matlab代码实现(含多个实例).rar: 主要资源压缩包,解压后包含文档和MATLAB代码文件夹。 文档: 提供了理论知识讲解。 MATLAB代码: 实现了文中讨论的各种模型,附带注释,便于理解与修改。 使用指南 下载资源: 点击下载“时间序列模型ARIMA的讲解与matlab代码实现(含多个实例).rar”文件。 解压文件: 解压缩至本地,确保你可以访问文档和代码。 环境准备: 确保你的电脑上已安装MATLAB,并熟悉基本操作。 学习流程: 首先阅读文档理解时间序列分析的理论基础,然后逐步跟随MATLAB代码示例进行实践。 实践应用: 尝试将所学应用到自己的数据集上,调整参数以优化模型性能。 注意事项 请根据M
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值