MATLAB算法实战应用案例精讲-【图像处理】缺陷检测(附python和matlab实现代码)

目录

前言

算法原理

什么是缺陷检测

缺陷检测任务

缺陷检测的关键问题

 

 缺陷检测分类

1.分类网络

2.检测网络

3.分割网络

缺陷检测的方法

1、激光检测法

2、漏磁检测

3、红外线检测

4、超声波探伤检测

5、光学机器视觉智能检测

6、 频域+空间域结合法

7.光度立体

知识拓展

基于深度学习的表面缺陷检测方法 

背景

1. 缺陷检测问题的定义

2.   表面缺陷检测深度学习方法

3.   关键问题

4.   缺陷检测数据集

5.   总结

代码实现

python

python+opencv 实现图片缺陷检测

使用Python的OpenCV模块识别滑动验证码的缺口 

MATLAB

基于matlab缺陷检测+阈值裂痕、划痕检测 

基于形态学实现印刷电路板缺陷检测 


前言

缺陷检测,是各行业产品质量管理体系中的重要一环,也是产品在正式投入市场应用前最后一道屏障。由于产品可能出现的品质问题多种多样,没有统一的衡量标准,所以一直以来,产品质检都是依靠人工来完成。可以说,产品最终的交付质量很大程度上取决于质检员的工作经验。而完全依靠人工来实现,又面临着效率低下、成本日益增加的问题。如何在保证产品质量的基础上,提升质检效率、降低成本是每一家制造企业长期追求的目标之一。得益于机器视觉的不断发展和成熟,越来越多的制造企业正在尝试将机器视觉检测技术引入产品缺陷检测。目前基于机器视觉的缺陷检测技术已经大量应用于纺织品、汽车零部件、半导体、光伏组件等产品的缺陷检测中,大大提升了制造业的质检效率。机器视觉在工业缺陷检测中的前景毋庸置疑,而工业制造领域的多样性、生产环境的复杂性、产品缺陷的非标性等因素,都给机器视觉在缺陷检测的实际应用带来了诸多挑战。

早期机器视觉主要以2D图像处理为主,随着制造工艺越来越复杂,对于检

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值