MATLAB算法实战应用案例精讲-【人工智能】语义分割(最终篇)(附实战应用案例及代码实现)

本文深入探讨了语义分割的理论与实践,包括问题解决方法、面试常见问题、各类语义分割算法,如基于区域、全卷积网络和弱监督方法。详细介绍了MATLAB环境下的DeepLabV3+实现,以及通过预训练的SegNet进行语义分割的代码生成。此外,还涵盖了Python中Unet模型的原理和基于YOLO、PSPNet的目标检测与语义分割系统。最后,讨论了语义分割在自动驾驶、医疗图像分割等领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

语义分割面临的问题及解决方法

几个高频面试题目

什么是图像中的语义信息?

语义分割中的上下文信息

语义分割与对象检测有什么区别?

语义分割方法

1-基于区域的语义分割

2-全卷积网络语义分割

3-弱监督语义分割

损失函数

1.逐点softmax后作交叉熵损失

2.focal loss

应用案例

1.语义分割网络的代码生成

分割网络

segnet_predict 入口函数

获取预训练的 SegNet DAG 网络对象

运行 MEX 代码生成

运行生成的 MEX

2.MATLAB环境下用DeepLabV3+实现语义分割

1.数据集构建

2.构建DeepLabV3+

3.设置训练参数,训练网络

4.模型性能验证

3.Python深度学习之Unet 语义分割模型(Keras) 

(1)Unet 原理

4.基于YOLO和PSPNet的目标检测与语义分割系统

文件和文件夹

./weights

./runs

./demo_image

./data

./models

train.py

test.py

detect.py

predict.py

SegmentationDataset.py

hubconf.py

requirements.txt

6.基于MATLAB&SIMULINK开发自动驾驶系统使用语义分割进行自动真值标注

1.问题描述

(2)创建道路和天空检测算法

(3)复查像素分割自动化类

(4)使用App中的Pixel Segmentation Automation类

应用场景

自动驾驶

医疗图像分割

场景理解

遥感地图处理

时尚工厂


前言

语义分割是将标签或类别与图片的每个像素关联的一种深度学习算法。它用来识别构成可区分类别的像素集合。例如,自动驾驶汽车需要识别车辆、行人、交通信号、人行道和其他道路特征。

语义分割可用于多种应用场合,比如自动驾驶、医学成像和工业检测。

语义分割面临的问题及解决方法

  • 速度和内存限制,需要降低分辨率,缺失了大量细节信息:多级特征融合、膨胀卷积扩大感受野
  • 上采样方式导致的信息丢失:Deconvolution Network ,encoder-decoder 网络,通过优化 decoder 网络来提高对细节特征的定位能力
  • 卷积只能考虑局部信息,丢失了全局信息:attention
  • 目标大小相差较大:多尺度融合、多膨胀率卷积并融合特征

几个高频面试题目

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值