目录
3.Python深度学习之Unet 语义分割模型(Keras)
6.基于MATLAB&SIMULINK开发自动驾驶系统使用语义分割进行自动真值标注
(4)使用App中的Pixel Segmentation Automation类
前言
语义分割是将标签或类别与图片的每个像素关联的一种深度学习算法。它用来识别构成可区分类别的像素集合。例如,自动驾驶汽车需要识别车辆、行人、交通信号、人行道和其他道路特征。
语义分割可用于多种应用场合,比如自动驾驶、医学成像和工业检测。
语义分割面临的问题及解决方法
- 速度和内存限制,需要降低分辨率,缺失了大量细节信息:多级特征融合、膨胀卷积扩大感受野
- 上采样方式导致的信息丢失:Deconvolution Network ,encoder-decoder 网络,通过优化 decoder 网络来提高对细节特征的定位能力
- 卷积只能考虑局部信息,丢失了全局信息:attention
- 目标大小相差较大:多尺度融合、多膨胀率卷积并融合特征