MATLAB算法实战应用案例精讲-【大模型】LLM算法(基础篇)(二)

本文深入介绍了基于MATLAB的LLM算法,特别是大模型如GPT-3和BERT的工作原理。文章讨论了自注意力机制、位置编码和多头自注意力在Transformer架构中的作用,以及AI大模型的发展历程和核心概念。重点讲解了词向量如何捕捉上下文信息,前馈网络如何进行推理预测,并通过实例分析了注意力层和前馈层在不同任务中的不同职责。此外,文章还探讨了训练语言模型的无监督学习方法和GPT-3的惊人性能,揭示了大规模模型在高级推理任务中的潜在能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

 算法原理

数学模型

 自注意力机制

位置编码

多头自注意力与前馈神经网络

什么是AI大模型?

AI大模型的发展历程

核心概念与联系

 深度学习与神经网络

Transformer架构

预训练与微调

LLM大模型实现OCR识别验证码 

1.LLM常见应用

1.1RAG检索增强生成----LangChain

1.2 AIGC技术应用

1、提高信息提取的准确性和效率

2、拓展OCR技术的应用场景

3、推动智能化发展

4、技术融合与创新

Word vectors

Word meaning depends on context

Transforming word vectors into word predictions

Can I have your attention please

A real-world example

the feed-forward step

Feed-forward networks reason with vector math

The attention and feed-forward layers have different jobs

How language models are trained

The surprising performance of GPT-3

基于BERT的文本分类模型


前言

2017年是机器学习领域历史性的一年。Google Brain 团队的研究人员推出了 Transformer,它的性能迅速超越了大多数现有的深度学习方法。著名的注意力机制成为未来 Transformer 衍生模型的关键组成部分。Transformer 架构的惊人之处在于其巨大的灵活性:它可以有效地用于各种机器学习任务类型,包括 NLP、图像和视频处理问题。

在过去的几年里,人工智能(AI)领域取得了显著的进展,特别是在大型模型的应用方面。这些大型模型,如OpenAI的GPT-3和谷歌的BERT,已经在各种任务中展示了令人瞩目的性能。

 算法原理

数学模型

 自注意力机制

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值