MATLAB基础应用精讲-【数模应用】 岭回归(Ridge)(附MATLAB、python和R语言代码实现)

目录

前言

算法原理

数学模型

Ridge 回归的估计量

Ridge 回归与标准多元线性回归的比较

3. Ridge 参数的选择

算法步骤

SPSSPRO

1、作用

2、输入输出描述

3、案例示例

4、案例数据

5、案例操作

6、输出结果分析

7、注意事项

8、模型理论

SPSSAU

岭回归分析案例

1、背景

2、理论

3、操作

4、SPSSAU 输出结果

5、文字分析

6、剖析

疑难解惑

F 值括号里面的两个值分别是什么?

智能分析每次都提示k值为0.99?

岭回归分析前是否需要对数据进行标准化处理?

岭回归时提示‘某标题数字恒定,请检查数据!’?

岭回归时没有输出标准化回归系数?

SPSSAU岭回归判断k值的标准是什么?

岭回归分析案例

其他说明

优缺点

优点

局限性

代码实现

MATLAB

R语言

python


 

前言

岭回归分析(Ridge Regression)是一种改良的最小二乘法,其通过放弃最小二乘法的无偏性,以损失部分信息为代价来寻找效果稍差但回归系数更符合实际情况的模型方程。

简单来说,岭回归是通过引入k个单位阵,使回归系数可以估计,得到的回归估计值要比简单线性回归系数更加稳定,也更加接近真实情况。虽然引入单位阵会导致信息丢失,但同时也换来回归模型的合理估计。

算法原理

数学模型

Ridge 回归的估计量

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值