MATLAB算法实战应用案例精讲-【数模应用】数据脱敏(二)(附python代码实现)

目录

几个高频面试题目

数据脱敏与反脱敏处理

一、数据脱敏处理

二、反脱敏处理

三、数据脱敏与反脱敏的实践应用

四、挑战与对策

算法原理

什么是数据脱敏?

数据脱敏的常见方法

数据脱敏的重要性

数据脱敏需求主要来源

数据脱敏实现方案

具体实现

数据脱敏需求

数据库脱敏的技术实现

数据脱敏算法

3.1 传统脱敏算法

3.2 数据匿名化算法

隐私数据风险泄漏模型

  2.2.1 K-Anonymity

  2.2.2 L-Diversity

  2.2.3 T-Closeness

数据库脱敏的实施步骤

有数BI-数据脱敏实现

1. 概述

2. 功能介绍

2.1 配置脱敏规则

2.2 配置数据权限

3. 特殊情况处理

3.1 数据源

3.2 报告

数据脱敏的应用场景

数据脱敏的挑战与未来

代码实现

python

实现手机号码脱敏

实现邮箱脱敏

实现身份证号脱敏

实现中文字符串脱敏


 

几个高频面试题目

数据脱敏与反脱敏处理

一、数据脱敏处理



数据脱敏,又称数据去标识化或数据混淆,是一种将敏感信息替换为虚构内容,但仍保持数据原有格式和分布特征的方法。通过数据脱敏,可以保护真实个体的隐私,同时允许数据在合规的前提下进行研究、测试、培训等活动。常见的脱敏技术包括:

1. 直接替换法:如将身份证号替换为随机生成的假号码,姓名替换为假名等。
2. 扰动法:对数值型数据进行加减噪声、偏移等操作,使其失去原始精确值,但保持数据分布不变。
3. 泛化法:如将日期脱敏

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值