目标检测YOLO实战应用案例100讲-基于深度学习的 无人机图像轻量化目标检测

目录

前言

国内外研究现状

传统目标检测算法

深度学习的目标检测算法

2基于深度学习的目标检测算法

2.1深度学习发展概述

2.2卷积神经网络

2.2.1卷积层

2.2.2池化

2.2.3全连接层

2.2.4激活函数

2.2.5注意力机制

2.3目标检测模型概要

2.3.1基于候选区域的二阶段目标检测算法

2.3.2基于回归的单阶段目标检测算法

3基于GhostNet的YOLOv5轻量化目标检测算法

3.1 GC-YOLO模型


本文篇幅较长,分为上下两篇,下篇详见基于深度学习的 无人机图像轻量化目标检测(续)

 

前言

随着我国制造业的高速发展,以无人机为代表的微型无线遥控设备取得了飞速发 展。无人机最早诞生于第一次世界大战,因其携带便捷且能从高空进行侦察目标,因此 常用于军事行动。近年来,以大疆、亿航等为代表的科技公司推出体积小巧、成本低廉、 功能完善的无人机设备,使得无人机逐渐应用于大众场所。同时无人机技术也在不断发 展[ 1] 和普及,其在电力设备检修、农业灌溉、交通疏导、海上救援、地质勘探等生活领 域有了更加广泛的应用[ 2] 。无人机设备具有相当高的灵活性,能够通过快速调整飞行位 置和高度从而到达指定位置&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值