【Vxworks】映射物理地址为虚拟地址,并获取此地址的存放值 最近开始接触Vxworks,得知Vx中不可对物理地址直接操作,需要先转为虚拟地址。根据1.转换为虚拟地址后,就要以这个虚拟地址为基址,从而获取其他地址的表示。类型转换、并取值,即可得到该地址所存值。本文则将介绍此实现方法。的地址空间进行映射,得到。表示 实际物理地址为。的地址,对这个地址进行。
【vue js】网页显示 [object Promise] 错误 关于这个错误,我先百度来着,但相关解决很少,而且是让修改浏览器中console的配置。实际上,不一定console有问题呢。先说代码长这样,是想用axios.get()去获得json数据:axios.get('http://xxx.xxx.xxx:8080/api/xxx?id='+this.user_id) .then( response => { // 就是这里需要我们尝试不同的语
【Pytorch】argument ‘indices‘ must be tuple of Tensors, not Tensor torch.index_put_(self, indices, value, accumulate)我是使用这个函数时报错了,发现官方定义 indices 为 (tuple of LongTensor) ,而不是tensor类型。为了把 tensor 转为 tuple 型,我为indices加了 ()a.index_put_((indices), value).to(device)然而,还是报这个错后来知道,直接加 () 并不能将其转化为 tuple,而是 需要 (,)a.index_pu.
【Pytorch】RuntimeError: copy_if failed to synchronize: cudaErrorAssert: device-side assert triggered 出现这个错误,就把代码从gpu转为在 cpu上运行!!!这样可以看到真正的错误!!!
【Pandas】Pandas中和groupby连用的count()和size()的区别! 总结: count() 计算的是 value(数值); size() 计算的是 size(个数)。NameAgeNationjack21USArose23Britishpaul24USAsize()df_age = df.groupby(by='Nation').size().reset_index()df_age Nation00UK11USA2我们可以发现,size()计数的是记录的条数,即每个nat
【Pytorch】tensor可以按行、列筛选的大利器——torch.index_select() 因为自己遇到了将 Tensor[1000,2] 截断为 [200,2]的需求,故在网络上寻找对策。先是看到了 tensor.gather() , 确实是不错的函数,但为了此需求稍显复杂。终于发现了torch.index_select() ,好用到爆炸。献上官方文档的例子:>>> x = torch.randn(3, 4)>>> xtensor([[ 0.1427, 0.0231, -0.5414, -1.0009], [-0.4664,
【Python】在一个list后添加另一个list,可用extend() a=[1,2]eid = [3,4,5,6]a.extend([x for x in eid[:3]])print([x for x in eid[:3]])print('a:',a)运行结果如下:如果不加 []:a=[1,2]eid = [3,4,5,6]a.extend(x for x in eid[:3])print(x for x in eid[:3])print('a:',a)运行结果为:
【Pandas】Groupby之后,转为dataframe结构 user_rsvp_count = df_rsvp['response'].groupby(df_rsvp['userid'])user_rsvp_count = user_rsvp_count.count()df_user_rsvp = {'userid':user_rsvp_count.index,'rsvp_count':user_rsvp_count.values}df_user_rsvp_count = pd.DataFrame(df_user_rsvp)df_user_rsvp_cou
【自用_链接汇总】CUDA_cudnn_pytorch_tensorflow安装链接们 CUDA 各个版本https://developer.nvidia.com/cuda-toolkit-archivecudnn 各个版本https://developer.nvidia.com/rdp/cudnn-archive安装上述两个的教程:windows10安装cuda10.2windows如何安装并切换不同版本的cuda,更新cuda版本Pytorch下载https://pytorch.org/get-started/locally/...
【2021年12月更新】Kaggle_titanic_数据集(dataset) 分享 链接:https://pan.baidu.com/s/1GSjtJEMTHkRUQpox2qD_dA提取码:0pxo
【Python】得到分词后的新txt(以原txt命名) 即拿即用:首先是分词函数:def fenci(dir): for (dirname, dirs, files) in os.walk(dir): # 取当前路径最后一个元素,即文件名!!! # print(os.path.split(dirname)[-1]) for file in files: if file.endswith('.txt'): filename = os.path.jo
【Python】合并一个文件夹下的多个txt文件 即拿即用: #读取 data_dir 路径下的文件们: data_dir = 'data/train_data' #生成 合并后的新文件 New_filename: New_filename = data_dir +'/data_fenci.txt' with open(New_filename, 'a+', encoding='utf8') as f1: for (dirname, dirs, files) in os.walk(data_dir):
100万量级数据库如何高效用MySql查询 首先,直接给出一个方案:建立索引!!!conn = sqlite3.connect('data.db') #连接数据库c = conn.cursor()sql0 = 'CREATE INDEX index_User ON User (userid)' #建立索引c.execute(sql0)conn.close()为要使用的sql语句中涉及的表和列建立索引:CREATE INDEX index_name ON table_name (column_list)CREATE U
【Networkx】module ‘networkx‘ has no attribute ‘connected_component_subgraphs‘ H = list(nx.connected_component_subgraphs(G))[0]博主本来想用以上代码获得大图的最大连通子图的,但出现了module 'networkx' has no attribute 'connected_component_subgraphs'问题。这是因为 nx.connected_component_subgraphs 在networkx 2.4版本已经完全废除了,我们可以采取下面代码获得 最大连通子图:H = list(G.subgraph(c) for
用Pyinstaller将带数据的python文件转为exe 首先,到py文件所在路径下,输入指令:pyinstaller demo.py #demo.py是我们要exe化的py文件回车,完成后这里生成 dist 文件夹 及 build 文件夹,进入 dist 文件夹,再进入demo文件夹,运行demo.exe这时大多情况下不是一帆风顺的:大多情况会出现ModuleNotFoundError等错误,对于这种,如果是缺包就pip install,如果安了包还有这种错误,就要返回py文件所在的那个路径:返回.py文件所在路径,可以发现新增了.spec这个文件
【Python】将Excel内容转为多个txt文件保存 import xlrdimport osdata_dir = './data/predict'def read_excel(): # 打开文件 workbook = xlrd.open_workbook('333.xlsx') # 根据sheet索引或者名称获取sheet内容 sheet1 = workbook.sheet_by_index(0) # sheet索引从0开始 # sheet的名称,行数rowNum,列数colNum print(sh
python中如何把点的关系数据转换为邻接矩阵? 直接上代码:import networkx as nxG = nx.Graph()path = './node_node_weight.txt'word_list = []with open(path,'r') as f: for line in f: cols = line.strip().split('\t') G.add_nodes_from([cols[0],cols[1]]) G.add_weighted_edges_from([(cols[0], cols[1], flo
【python】ImportError:attempted relative import with no known parent package Deepwalk deepwalk.py graph.py文件结构如上,deepwalk 和 graph 在一个层次,但from . import graph出现错误:ImportError:attempted relative import with no known parent package解决方法:from Deepwalk import graph 即: from '文件夹名' import 'py文件名'...