带你理解 Hanoi 汉诺塔递归算法

本文介绍了汉诺塔问题的起源和数学性质,将其抽象为一个需要解决的数学问题。通过递归算法,分析了移动N个圆盘的最少次数和移动过程。文中详细解释了递归调用栈的概念,以帮助理解Hanoi问题的递归解决方案,并总结了移动圆盘的规律,提供伪代码展示归纳过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一. 由游戏引发的 Hanoi 问题

汉诺塔是根据一个传说形成的一个问题。汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着 64 片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

二. 一种数学问题

0000

我们将 Hanoi 问题抽象为一种数学问题。首先给出如下三个柱子 A、B、C,其中 A 柱子上有从上到下从小叠到大的 N 个云盘。现要求将A柱子上的圆盘都移动到 C 柱子上,其中,每次移动都必须满足:

  1. 每次只能移动一个圆盘
  2. 小圆盘上不能放大圆盘

那么针对这个数学问题,就可以提出相关问题:

  1. 移动 N 个圆盘最少需要多少次
  2. 第 M 步移动的是哪个圆盘以及圆盘移动方向
解题:

设总共有 N 个圆盘,Steps表示总移动次数

1.对于问题1

(1)if N == 1

第1次 1号盘 A—->C 
Steps = 1 次

(2)if N == 2

11号盘 A—->B22号盘 A—->C31号盘 B—->C 
Steps = 3

(3)if N == 3

11号盘 A—->C
​第22号盘 A—->B
​第31号盘 C—->B
​第43号盘 A—->C
​第51号盘 B—->A
​第62号盘 B—->C
​第71号盘 A—->C 
Steps = 7

依次往下推,

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值