Improving Peer Assessment with Graph Neural Networks
同行评估系统(Peer assessment systems)在许多环境中出现,例如大型(在线)班级的同行评分、会议中的同行评审、同行艺术评估等。然而,同行评估可能不如专家评估准确,从而使这些系统不可靠。同行评估系统的可靠性受到各种因素的影响,如同行的评估能力、他们的战略评估行为和同行评估设置(例如,同行评估小组工作或他人的个人工作)。利用我们的同行评估网络模型,我们引入了一个图神经网络,它可以学习评估模式和用户行为,以更准确地预测专家评估。









