90后的青春,定格在被淡忘的QQ空间里

90后的青春,定格在被淡忘的QQ空间里

QQ空间,这个曾经陪我们从童年到少年再到成年,从2G时代再到如今的4G末,占据了我们太多的青春回忆,如今好友空间动态更新的不在像从前那样频繁。依稀记得当年的好友买卖,抢车位再或者情侣空间,现在想想那时候真的很幼稚,那就是我们傻逼的童年,什么互踩,火星文,跑堂见证了我们无忧无虑的童年。

有时候看看QQ推送的"那年今日",看到自己好几年前发的动态,说的傻话,自己都怕了自己。有时候看到好朋友几年前的动态,不由笑骂道,这孙子,怎么这么2! 即使现在不怎么用QQ了,有时候看看曾经发的说说还有空间的留言。即使让我再尴尬也不舍得删,因为那都是青春满满的回忆。

空间留言上千条,说说也比较多,一页一页的翻比较麻烦。索性就把这些数据都下载到本地。同理我们也可以导出全部联系人的说说和留言板。

 

Selenium

由于访问好友留言板需要登录,为了方便起见我们使用Web应用程序测试的Selenium工具。该工具可以用于单元测试,集成测试,系统测试等等。它可以像真正的用户一样去操作浏览器等,支持Mozilla Firefox、Google Chrome、Safari、Opera、IE等等浏览器。

使用这个工具之前我们需要安装selenium库和下载相应浏览器的驱动。然后通过分析QQ空间登录界面我们发现默认是扫码登录,因此需要切换成账号密码登录。

 

通过分析html标签属性,我们发现 id="switcher_plogin",是个切换登录的全局唯一属性。同理我们再需要找到账号、密码输入框和点击登录的元素就可以用selenium模拟登录了

 

登录部分代码如下:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

from selenium import webdriver

 

driver = webdriver.Chrome()

    # 获取谷歌浏览器驱动

    driver = webdriver.Chrome()

    # 登录网站

    driver.get('https://i.qq.com')

    # 选择账号密码登录

    driver.switch_to_frame('login_frame')

    # 点击输入框获取输入

    driver.find_element_by_id('switcher_plogin').click()

    # 输入账号

    driver.find_element_by_id('u').send_keys('你的qq号')

    # 输入密码

    driver.find_element_by_id('p').send_keys('qq密码')

    # 点击登录

    driver.find_element_by_id('login_button').click()

  

工作前的参数准备

通过查看开发者工具中的请求我们发现,登录之后每次请求除了携带必要的参数以外,还携带了登录获取的token和g_tk。token我们可以从网页源代码中直接获取,但是g_tk在源代码中没有,根据以往经验第一步只能从js中查看,果然发现了一段加密代码,再结合上下文发现是从cookie中取出“p_skey”的值再经过一系列操作就是g_tk的值了。因为我们需要先获取cookie,然后再通过cookie获取g_tk。

在这里插入图片描述

部分js加密逻辑代码

复制代码

if (e) {
     if (e.host && e.host.indexOf("qzone.qq.com") > 0) {
        try {
           t = parent.QZFL.cookie.get("p_skey")
        } catch(e) {
           t = QZFL.cookie.get("p_skey")
        }
     } 
        ............
  }

"g_tk=" + QZFL.pluginsDefine.getACSRFToken(t)

QZFL.pluginsDefine.getACSRFToken._DJB = function(e) {
        var t = 5381;
        for (var n = 0,
        r = e.length; n < r; ++n) {
            t += (t << 5) + e.charCodeAt(n)
        }
        return t & 2147483647
    };

复制代码

 

 

获取token && cookie && g_tk代码

复制代码

"""
 获取g_tk的值
"""
def get_g_tk(cookie):
    hashes = 5381
    for letter in cookie['p_skey']:
        hashes += (hashes << 5) + ord(letter)
    return hashes & 0x7fffffff

# 获取登录之后的cookie信息
cookie = {}
for elem in driver.get_cookies():
    cookie[elem['name']] = elem['value']
# 获取g_tk
g_tk = get_g_tk(cookie)
# 利用xpath获取登录之后的网页源代码
html = driver.page_source
xpath = r'window\.g_qzonetoken = \(function\(\)\{ try\{return "(.*?)";}'
# 通过xpath 获得登录后的token
token = re.compile(xpath).findall(html)[0]

复制代码

 

开始搞事

破解了一个简单的反爬虫,下面就可以编写正式的爬虫代码了,首先确定我们目标url、通过浏览器分析响应的json对象、编写headers

因为每次请求都需要携带登录信息,为了方便我们用到了session类,其次观察相应我们发现返回的response有无用的字符,因此需要进行截取

在这里插入图片描述

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

headers = {

    'authority''user.qzone.qq.com',

    'method''GET',

    'scheme''https',

    'accept-language''zh-CN,zh;q=0.9',

    'user-agent''Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36',

}

 

def get_resp(cookie, g_tk, token, page):

    session = requests.session()

    # 将cookie字典转换成RequestsCookieJar

    = requests.utils.cookiejar_from_dict(cookie)

    # 将headers 放入session

    session.headers = headers

    # RequestsCookieJar复制给session

    session.cookies = c

    # 访问留言板的url

    url = f'https://user.qzone.qq.com/proxy/domain/m.qzone.qq.com/cgi-bin/new/get_msgb?uin={登陆的qq}&hostUin={要查询留言内容的QQ号}&start={page}&num=10&g_tk={g_tk}&qzonetoken={token}'

    print(url)

    response = session.get(url)

    # 截取无用的字符

    resp_text = response.text[10-3]

    # 转为json

    resp_json = json.loads(resp_text)

    return resp_json

  

 

上面的方法,只是获得了某一页的接口相应,我们通过json获取留言总数,再除以每页的条数,就可以知道总页数了。然后再遍历去取每页的数据,为了方便查看将数据保存在csv文件中,另外将留言内容保存在txt文件中,生成词云。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

def get_zone_xx(cookie, g_tk, token, page=0):

    # 初始化请求为了取总条数

    resp_json = get_resp(cookie, g_tk, token, page)

    # 总条数

    total = resp_json['data']['total']

    print(f'共{total}条留言信息')

    # 总页数

    size = int(total/10 + 1)

    # 已经读取的信息条数

    use_page = 0

    # 保存每条数据信息,生成csv文件用

    content_arr = []

    for in range(0, size):

        # 请求每一页的内容

        resp_json = get_resp(cookie, g_tk, token, i)

        # 当条数大于或等于总条数 跳出循环

        if use_page >= total:

            break

        # 从每页数据中取出需要的字段值

        for comment in resp_json['data']['commentList']:

            use_page += 1

            print(f'当前正在读取第{use_page}条')

            page_json = []

            # 留言日期

            page_json.append(comment['pubtime'])

            # 昵称

            page_json.append(comment['nickname'])

            # 内容

            content = replace_html(comment['htmlContent'])

            # 将内容写入文本 生成词云用

            with open('zone_text111.txt''a') as f:

                f.write(content)

 

            page_json.append(content)

            content_arr.append(page_json)

  

 

生成csv文件

1

2

3

4

5

# 将总数据转化为data frame再输出

df = pd.DataFrame(data=content_arr,

                      columns=['留言日期''昵称''留言内容'])

df.to_csv('QQ_ZONE.csv', index=False, encoding='utf-8_sig')

print('已保存为csv文件.')

  

运行上面代码生成csv文件部分内容如下

 


生成词云(wordcloud)代码如下

 

1

2

3

4

5

6

7

8

9

10

11

12

from wordcloud import WordCloud

import matplotlib.pyplot as plt

with open('zone_text.txt','r') as f:

    mytext = f.read()

 

font = r'C:\Windows\Fonts\simfang.ttf'

wc = WordCloud(collocations=False, font_path=font, width=1400, height=1400, margin=2).generate(mytext)

plt.imshow(wc)

plt.axis("off")

plt.show()

 

plt.show()

  

运行结果如下:

 

写在最后

上面的代码并没有太复杂,也许是触景生情,也许是对现在朋友圈各种乱七八糟的信息产生了抵触,所以试着去回忆青春的那些往事。
朋友圈和空间并不能去衡量一个人是是否成熟,但是对于大部分90后来说,空间真的是承载了太多纯真的回忆。不忘初心,砥砺前行!!!

没有更多推荐了,返回首页

私密
私密原因:
请选择设置私密原因
  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他
其他原因:
120
出错啦
系统繁忙,请稍后再试