发票智能识别系统:Python构建的高效发票处理与智能分析解决方案

随着现代企业数字化转型的不断深入,企业财务管理和税务合规面临着大量的发票处理需求。传统的发票录入方式依赖于大量人工,效率低下且容易出错。如何实现发票自动化处理智能分析,成为了提升企业财务运营效率的关键点。为了解决这些痛点,我们开发了一款基于Python发票智能识别系统,能够快速处理图片或PDF格式的发票,并通过大模型进行智能分析。

预览:

完整源码获取地址:发票智能识别系统

系统功能概述

我们的发票智能识别系统具备以下核心功能:

  1. 多格式发票识别:支持图片和PDF格式发票的自动识别。
  2. 阿里云通义千问大模型分析:通过接入大模型,对发票内容进行深入的智能分析。
  3. 自动化数据提取:能够精准提取发票的关键信息,如发票号码、开票日期、购销双方信息等。
  4. 多线程处理:保障大批量发票处理的效率,系统操作流畅不卡顿。
  5. 数据导出:支持将处理后的发票信息导出为Excel格式,方便进一步使用。

系统开发架构与技术栈

我们系统的开发基于Python,结合了PyQt5pdfplumber百度OCR阿里云通义千问大模型等技术,构建了一个高度自动化的发票处理平台。

  • PyQt5:用于开发用户友好的图形界面(GUI)。
  • pdfplumber:用于PDF发票的文本提取。
  • 百度OCR:处理图片格式发票的OCR识别。
  • 阿里云通义千问大模型:用于发票内容的智能分析。
  • 多线程处理:通过QThread模块实现多线程调用,保证系统高效处理。

代码实现:发票处理核心功能

智能发票识别系统 Requirements tomcat服务器 eclipse mysql数据库 redis数据库 Function 自动归类识别机打发票中的发票信息 用户手动绘制用于识别的发票模板和识别区域 查看等待识别发票的任务缓冲队列 可视化发票识别算法的过程,动态展示当前识别的区域和结果 管理员可对系统平台内的用户、用户组进行权限编辑管理 单位负责人可修改使用系统平台的单位信息 个人设置可查看个人信息和权限 Details 前端 Jquery + bootstrap搭建前端框架,处理前端逻辑和展示,负责MVC架构中的View视图层 前后端通过websocket和ajax通信,ajax主要用于按钮等控件的事件处理函数中的请求,websocket用于后端主动向前端推送消息 JSP控制cookies和session,在页面跳转时记录会话用户态,并可通过前端可视化界面对用户权限(用户权限分为继承的用户组权限和个人权限)进行编辑 识别算法的可视化通过websocket实现,算法端将每个区域的识别结果通过后台服务器逐次转送给前端,前端在onmessage回调函数中处理信息并在可视化窗口的canvas画布中显示出来 通过画布的getImageData和putImageData获取图片的像素点,并制造模糊效果,对比突出当前的识别区域 Js + canvas实现用户动态画图的效果,可以在canvas画布中框出自定义的识别区域和填写区域信息 后端 Spring MVC + Spring + JDBC搭建后端框架,Controller负责接收请求,Service负责主要业务逻辑,Dao负责数据库访问 算法端用C++编写,java后端通过多线程+socket+TCP算法端通讯,利用对象锁完成线程调度 利用redis实现缓冲队列以及模板操作调度队列 利用spring-websocket前端进行全双工通信 使用shiro作为安全管理框架,通过其内置session实现安全登录,使用shiro注解完成权限管理。 算法端 使用Bag of Words + CNN完成票据分类,根据分类结果查询并获取相应的发票模板。 使用SIFT特征匹配和配准思路完成票据对齐 根据模板中信息区域坐标截取ROI,因为票据可能存在套打情况,故还使用了约束式ROI搜索算法对信息区域进行重定位。 对每个ROI进行去噪、去印章、去直线等预处理操作,并使用形态学处理得到目标文本信息的连通体的最小外接矩形,并将此区域送入OCR模块。 使用搭建好的基于深度学习的卷积神经网络进行文字识别,识别结果组装成协议格式,返回给后台。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值