快速掌握向量数据库-Milvus探索2_集成Embedding模型

一、前言

向量数据库的核心能力在于存储和检索非结构数据,如文本、图像、音频。多用于RAG(检索增强生成)、推荐系统多媒体检索等应用场景

bge-large-zh模型是专为中文文本设计的,同尺寸模型中性能优异的开源Embedding模型,凭借其中文优化、高效检索、长文本支持和低资源消耗等特性,成为中文Embedding领域的标杆模型。

本篇要实现的目标:通过bge-large-zh向量模型生成写作内容的embedding向量(1024维度),并将结果存储在Milvus向量数据库中,然后对文本内容进行向量的相似性查询。

本专栏最终要实现的架构为

上一篇文章(Milvus环境搭建和基础开发):

快速掌握向量数据库-Milvus探索1-CSDN博客

 

二、术语

2.1 向量

在AI领域,向量特指向量嵌入 (Vector Embeddings),即通过机器学习模型将非结构化数据(如文本、图像、音频等)转换为高维数值向量,以捕捉其语义或特征信息。 非结构化数据通过向量化,除了具备语义捕捉能力、还能借助向量数据库专门的索引技术(如近似最近邻搜索)快速处理海量非结构化数据的相似性查询,这是传统数据库难以实现的。

2.2 Milvus

Milvus是一个专为处理高维向量数据设计的开源向量数据库,支持数百亿级数据规模,在多数开源向量数据库中综合表现突出(一般是其他的2~5倍)。

提供三种部署方式:本地调试Milvus Lite、企业级小规模数据的Milvus Standalone(一亿以内向量)、企业级大规模数据的Milvus Distributed (数百亿向量)。

 

2.3 ModelScope

阿里巴巴达摩院推出的开源模型服务平台,提供开源模型下载、CPU和GPU限时免费资源,我们将基于该平台部署大语言模型进行推理。

 

 

三、代码

代码文件包括milvus_server.py、bge-large-zh_v2.py

3.1bge-large-zh生成embedding向量

通过modelScope提供的免费GPU服务,将bge-large-zh下载到GPU服务器中。

下载命令modelscope download --model AI-ModelScope/bge-large-zh --local_dir ./

细节参考往期博客模型部署部分:快速掌握大语言模型-Qwen2-7B-Instruct落地1-CSDN博客

def get_embedding_list(text_list):
    """
    输入文本列表,返回文本的embedding向量
    :param text_list: 待获取embedding的文本集合
    :return: ebedding向量集合
    """
    
     # 编码输入(自动截断和填充)
    encoded_input = tokenizer(text_list, padding=True, truncation=True, return_tensors='pt')

    # 调用大模型得到文本的embedding
    with torch.no_grad():
        model_output = model(**encoded_input)
        sentence_embeddings = model_output[0][:, 0] # bdge-large-zh 模型的输出是一个元组,第一个元素是句子的嵌入向量,1024维
        print(f"sentence_embeddings:{ len(sentence_embeddings[0])}")
        # 归一化处理:可以提高模型的稳定性和收敛速度,尤其在处理向量相似度计算时非常有用
        sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)

        # 转换嵌入向量为列表
        embeddings_list = sentence_embeddings.tolist()
        return embeddings_list

3.2 获取写作内容向量并保存到Milvus中

def insert_writing_embeddings(text_list):
    """
    获取写作生成内容的文本的embedding向量,并写入到milvus中
    :param text_list: 待获取embedding的写作生成内容集合
    :return: 写入到到milvus结果,ebedding向量集合
    """
    # 获取embedding 
    embeddings_list = get_embedding_list(text_list)
    print(f"embeddings_list:{len(embeddings_list)}")
    # 写作记录合集
    writing_list = []
    for i, embedding in enumerate(embeddings_list):
        writingDTO = WritingDTO(embedding, text_list[i], random.randint(500,9999))  #组装对象数据,其中biz_id是业务ID,这里这里方便说明暂设为随机数字
        writing_list.append(writingDTO.to_dict()) # 将对象转换为字典,并添加到集合中
    # 插入数据到 Milvus
    res = insert_data_to_milvus(writing_collection_name,writing_list)
    return res,embeddings_list

 

写入结果:

 

3.3 根据写作内容进行向量的相似性搜索

def search_writing_embeddings(text):
    """
    获取写作内容的embedding向量,并从milvus中搜索
    """
    # 获取embedding
    embeddings_list = get_embedding_list([text])
    # 搜索数据
    res = search_data_from_milvus(writing_collection_name,embeddings_list,3)
    return res

 

搜索结果:

3.4 milvus_server完整代码

from pymilvus import MilvusClient, db
import numpy as np
from pymilvus.orm import collection
from typing import Iterable

# 定义 Milvus 服务的主机地址
host = "阿里云公网IP"

# 创建一个 Milvus 客户端实例,连接到指定的 Milvus 服务
client = MilvusClient(uri=f"http://{host}:19530",db_name="db001") # 连接到 Milvus 服务并选择数据库 "db001"
# collection_name = "writing" # 指定要连接的集合名称 "writing"

# 写作生成对象
class WritingDTO:
    def __init__(self, content_vector, content_full, biz_id):
        self.content_vector = content_vector
        self.content_full = content_full
        self.biz_id = biz_id

    def to_dict(self):
            """
            将 WritingDTO 对象转换为字典。

            :return: 包含 WritingDTO 对象属性的字典
            """
            return {
                "content_vector": self.content_vector,
                "content_full": self.content_full,
                "biz_id": self.biz_id
            }


def insert_data_to_milvus(collection_name,data):
    """
    将对象集合中的数据插入到 Milvus 集合中。

    :param data: 字典对象集合
    :return: 插入操作的结果
    """

    print(f"insert_data_to_milvus:{collection_name}")
    print(f"insert_data_to_milvus:{len(data)}")
    res = client.insert(
        collection_name=collection_name,
        data=data
    )
    return res

def search_data_from_milvus(collection_name,query_vector,output_fields, top_k=10):
    """
    从 Milvus 集合中搜索与查询向量最相似的向量。

    :param query_vector: 查询向量
    :param top_k: 返回的最相似向量的数量
    :return: 搜索结果
    """
    res = client.search(
        collection_name= collection_name, # 合集名称
        data=query_vector, # 查询向量
        search_params={
            "metric_type": "COSINE", # 向量相似性度量方式,COSINE 表示余弦相似度(适用于文本/语义相似性场景); 可选 IP/COSINE/L2 
            "params": {"level":1}, 
        }, # 搜索参数
        limit=top_k, # 查询结果数量
        output_fields= output_fields, # 查询结果需要返回的字段
        consistency_level="Bounded" # 数据一致性级别,Bounded允许在有限时间窗口内读取旧数据,相比强一致性(STRONG)提升 20 倍查询性能,适合高吞吐场景; 
    )
    return res

3.5 bge-large-zh_v2.py完整代码

from re import search
from transformers import AutoTokenizer, AutoModel
import torch
import random
from milvus_server import WritingDTO, insert_data_to_milvus,search_data_from_milvus

# 加载模型和分词器
model_path = "/mnt/workspace/models/bge-large-zh"  # 根据实际情况修改
model = AutoModel.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
# 推理模式
model.eval()  

# 写作生成合集名称
writing_collection_name = "writing"


def get_embedding_list(text_list):
    """
    输入文本列表,返回文本的embedding向量
    :param text_list: 待获取embedding的文本集合
    :return: ebedding向量集合
    """
    
     # 编码输入(自动截断和填充)
    encoded_input = tokenizer(text_list, padding=True, truncation=True, return_tensors='pt')

    # 调用大模型得到文本的embedding
    with torch.no_grad():
        model_output = model(**encoded_input)
        sentence_embeddings = model_output[0][:, 0] # bdge-large-zh 模型的输出是一个元组,第一个元素是句子的嵌入向量,1024维
        print(f"sentence_embeddings:{ len(sentence_embeddings[0])}")
        # 归一化处理:可以提高模型的稳定性和收敛速度,尤其在处理向量相似度计算时非常有用
        sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)

        # 转换嵌入向量为列表
        embeddings_list = sentence_embeddings.tolist()
        return embeddings_list


def insert_writing_embeddings(text_list):
    """
    获取写作生成内容的文本的embedding向量,并写入到milvus中
    :param text_list: 待获取embedding的写作生成内容集合
    :return: 写入到到milvus结果,ebedding向量集合
    """
    # 获取embedding 
    embeddings_list = get_embedding_list(text_list)
    print(f"embeddings_list:{len(embeddings_list)}")
    # 写作记录合集
    writing_list = []
    for i, embedding in enumerate(embeddings_list):
        writingDTO = WritingDTO(embedding, text_list[i], random.randint(500,9999))  #组装对象数据,其中biz_id是业务ID,这里这里方便说明暂设为随机数字
        writing_list.append(writingDTO.to_dict()) # 将对象转换为字典,并添加到集合中
    # 插入数据到 Milvus
    res = insert_data_to_milvus(writing_collection_name,writing_list)
    return res,embeddings_list

def search_writing_embeddings(text):
    """
    获取写作内容的embedding向量,并从milvus中搜索
    """
    # 获取embedding
    embeddings_list = get_embedding_list([text])
    # 搜索数据
    res = search_data_from_milvus(writing_collection_name,embeddings_list,["id","content_full","biz_id"],3)
    return res


# if __name__ == "__main__":
#      # 输入文本
#     sentences = ["广州好玩的地方有广州塔,长隆野生动物世界,沙面岛......","广州好吃的有经典粤菜菜,传统的美食,还有各种美食的店......"]
#     # 将文本转eembedding向量并写入到milvus中
#     res = insert_writing_embeddings(sentences)
#     print("Insert result:", len(res[0]))
#     print("Sentence embeddings:", len(res[1]))


if __name__ == "__main__":
    # 输入文本
    content = "推荐广州有哪些好玩的地方"
    # 将文本转eembedding向量并写入到milvus中
    res = search_writing_embeddings(content)
    print("Search result:", res)

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值