人生苦短,所以用了Python,但是Python慢啊,所以依旧苦短。好在可以开n倍加速早点阶数这无聊的等待时间。
在NLP任务中经常会遇到对大文本进行处理的任务,这些任务包括但不限于:
- 分词
- 词性标注
- 词频统计(大名鼎鼎的WordCount)
- 关键词提取
- 大小写转换(当然这个bash命令更方便了,放在这里只是为了凑数:)
为了方便描述,就用task(line)笼统地表示处理这些任务的函数吧,line是每一行的句子。
在常规使用Pythn的时候,我们会打开一个文件然后一行一行地处理:
with open(file, encoding="utf8") as f:
for line in f:
task(line)
但是这个方式的处理速度是十分感人的,单进程的处理使得本身就已经很慢的Python只能在处理小文本的时候发挥优势,真正做到了一核有难,八核围观。
那么还有一种方法就是使用多核加速文件读取速度了。在C++、Java等语言中发挥多核优势可以选择用多线程或多进程,特别是多线程能共享内存,只要保证了线程安全就是一种加轻量化的加速方案。
但是Python一般会因为GIL(Global Interpreter Lock)导致多线程速度反而更慢,那么就只剩下多进程了。
经过一段时间的摸索核实践,我总结出一个使用多进程加速处理文件的模板,在实践中已经验证了其可行性。主要思想和Map-Reduce类似。
需要用到的库有这些:
import logging

在处理大文本的NLP任务中,如分词、词性标注等,单进程Python处理速度较慢。由于GIL限制,多线程无法充分利用多核优势,因此采用多进程成为加速选择。本文分享了一个经过实践验证的Python多进程文件处理模板,其思路类似Map-Reduce,通过分发数据到子进程并合并结果来提升效率。实验表明,这种方法显著提高了处理速度。
最低0.47元/天 解锁文章
96

被折叠的 条评论
为什么被折叠?



