【模板】线段树单点修改

线段树模板:单点修改与区间最值
本文介绍了线段树的基本概念,并提供了支持单点修改的线段树模板。模板中详细解释了如何通过二分查找定位到需要修改的节点,并更新其父节点,以保持线段树的正确性。同时,给出了一个包含修改和查询最大值的例题,以及相应的输入输出样例。
  • 基本介绍
  • 模板题目
  • 代码实现

基本介绍

在求区间最值的基础上加了一个单点修改 也就是下面代码中的update函数 主要通过不断二分区间往下找左右子区间 直到一个子区间只包括一个节点 直接改变这个节点的值并改变所有与这个点相关的父亲节点 (摘自战友Jiang.S博客)

模板题目

题目描述
给出N个数,两种操作:
1、C x y:修改第x个数的值为y;
2、P x y:求第x到第y个的最大值,注:x未必比y小

输入输出格式
输入格式:
第一行输入N和M,N表示有N个数(N<=200000,M<5000),M表示有M个操作
下来N个数
然后是M个操作。
输出格式:
遇到P操作的时候,输出结果。

输入输出样例
输入样例:
5 6
1 2 3 4 5
P 1 5
C 3 6
P 3 4
P 4 5
C 2 9
P 1 5
输出样例:
5
6
5
9

代码实现



#include<iostream>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<string>

    using namespace std;
    #define in = read()
    typedef long long ll;
    const ll size = 1000000 + 10000;

        #define left (rt<<1)
        #define right (rt<<1|1)
        #define mid ((l + r)>>1)
        #define lson l,mid,left
        #define rson mid + 1,r,right
        #define len (r - l + 1)

            ll n,m;
            ll tree[size];

inline ll read(){
        ll num = 0 , f = 1;   char ch = getchar();

        while(!isdigit(ch)){
                if(ch == '-')   f = -1;
                ch = getchar();
        }

        while(isdigit(ch)){
                num = num*10 + ch - '0';
                ch = getchar();
        }

        return num*f;
}

inline void pushup1(ll rt){   tree[rt] = max(tree[left] , tree[right]);}

void buildtree(ll l, ll r, ll rt){
        if(l == r){   tree[rt] in;      return;}
        buildtree(lson);    buildtree(rson);    pushup1(rt);
}

ll query(ll from,ll to,ll l,ll r,ll rt){
        if(from <= l && to >= r)    return tree[rt];
        ll ans = 0;
        if(from <= mid)   ans = max(ans , query(from,to,lson));
        if(to > mid)    ans = max(ans , query(from,to,rson));
        return ans;
}

void update(ll num,ll dis,ll l,ll r,ll rt){
        if(l == r){   tree[rt] = dis;    return;}
        if(num <= mid)    update(num,dis,lson);
        else    update(num,dis,rson);
        pushup1(rt);
}

int main(){
        n in;   m in;
        buildtree(1,n,1);

        for(int i=1;i<=m;i++){
                string s;    cin>>s;
                ll x,y;   x in;   y in;
                if(s[0] == 'P'){
                        if(x <= y) 
                                printf("%lld\n",query(x,y,1,n,1));
                        if(y < x)
                                printf("%lld\n",query(y,x,1,n,1));
                }
                else if(s[0] == 'C')
                        update(x,y,1,n,1);
        }
}


//COYG
### 线段树算法实现 线段树是一种高效的数据结构,能够快速处理数组上的单点修改和区间查询操作。以下是基于 Python 的线段树模板代码,支持单点更新和区间查询功能。 #### 1. 初始化线段树 构建线段树时,通常会采用递归的方式初始化节范围及其对应的值。 ```python class SegmentTree: def __init__(self, data): self.n = len(data) self.tree = [0] * (4 * self.n) # 创建大小为4n的数组存储线段树 self.build(0, 0, self.n - 1, data) def build(self, node, start, end, data): if start == end: # 叶子节 self.tree[node] = data[start] else: mid = (start + end) // 2 left_child = 2 * node + 1 right_child = 2 * node + 2 self.build(left_child, start, mid, data) # 构建左子树 self.build(right_child, mid + 1, end, data) # 构建右子树 self.tree[node] = self.tree[left_child] + self.tree[right_child] # 合并左右子树的结果 ``` #### 2. 单点更新 当某个位置的值发生变化时,可以通过递归找到对应叶子节并更新其父节的值。 ```python def update_point(self, idx, value): self.update_node(0, 0, self.n - 1, idx, value) def update_node(self, node, start, end, idx, value): if start == end: # 找到目标叶子节 self.tree[node] = value else: mid = (start + end) // 2 left_child = 2 * node + 1 right_child = 2 * node + 2 if start <= idx <= mid: # 更新左侧子树 self.update_node(left_child, start, mid, idx, value) else: # 更新右侧子树 self.update_node(right_child, mid + 1, end, idx, value) self.tree[node] = self.tree[left_child] + self.tree[right_child] # 维护当前节的值 ``` #### 3. 区间查询 通过递归方式查找指定区间的总和或其他聚合函数结果。 ```python def query_range(self, l, r): return self.query_node(0, 0, self.n - 1, l, r) def query_node(self, node, start, end, l, r): if r < start or end < l: # 当前区间完全不重叠 return 0 if l <= start and end <= r: # 完全覆盖 return self.tree[node] mid = (start + end) // 2 left_child = 2 * node + 1 right_child = 2 * node + 2 p1 = self.query_node(left_child, start, mid, l, r) # 查询左子树 p2 = self.query_node(right_child, mid + 1, end, l, r) # 查询右子树 return p1 + p2 ``` 以上实现了线段树的核心功能——单点更新和区间查询[^1]。 --- ### 使用示例 以下是一个简单的例子展示如何使用上述线段树类来完成单点更新和区间查询的操作: ```python data = [1, 3, 5, 7, 9, 11] st = SegmentTree(data) print(st.query_range(1, 3)) # 输出:15 (3+5+7) st.update_point(2, 6) # 将索引2处的值从5改为6 print(st.query_range(1, 3)) # 输出:16 (3+6+7) ``` ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值