思考 :每个stage中的task的数量是多少??
RDD任务切分中间分为:Application、Job、Stage和Task
1)Application:初始化一个SparkContext即生成一个Application
2)Job:一个Action算子就会生成一个Job
3)Stage:根据RDD之间的依赖关系的不同将Job划分成不同的Stage,遇到一个宽依赖则划分一个Stage。
4)Task:Stage是一个TaskSet,里面还有很多个task,将Stage划分的结果发送到不同的Executor执行即为一个Task。
注意:Application->Job->Stage-> Task每一层都是1对n的关系。
每一个过程的任务数,对应一个inputSplit1, Partition
输入可能以多个文件的形式存储在HDFS上,每个File都包含了很多块,称为Block。
当Spark读取这些文件作为输入时,会根据具体数据格式对应的InputFormat进行解析,一般是将若干个Block合并成一个输入分片,
称为InputSplit,注意InputSplit不能跨越文件。
随后将为这些输入分片生成具体的Task。InputSplit与Task是一一对应的关系。
随后这些具体的Task每个都会被分配到集群上的某个节点的某个Executor去执行。
- 每个节点可以起一个或多个Executor。
- 每个Executor由若干core组成,每个Executor的每个core一次只能执行一个Task。
- 每个Task执行的结果就是生成了目标RDD的一个partiton。
注意: 这里的core是虚拟的core而不是机器的物理CPU核,可以理解为就是Executor的一个工作线程
而 Task被执行的并发度 = Executor数目 * 每个Executor核数。