范数的概念


一、内积,Euclidean范数和角度

  1. 对于任意的向量x,y∈Rn ,他们在n维空间上的标准内积,表示如下:
    在这里插入图片描述
  2. 向量x∈RnEuclidean范数(又称 L 2 L_2 L2 范数),如下所示:
    在这里插入图片描述
  3. Cauchy-Schwartz不等式表明,对于任意的x,y∈Rn ,都有:
    在这里插入图片描述
    因此非零向量x,y之间的(无符号)角度定义为:
    在这里插入图片描述
    其中cos-1(U)∈[0,π], 如果x和y正交,那 xTy=0。

二、范数、距离和单位球

  1. 对于一个函数 f f f:Rn→R, d o m f domf domf = R R Rn,如果满足一下几个条件,则被称为范数
    在这里插入图片描述
    我们使用符号 f ( x ) = ∣ ∣ x ∣ ∣ f(x)= ||x|| f(x)=x表示的范数是实数空间上绝对值。当我们要指定特定的范数时,我们使用符号 f ( x ) = ∣ ∣ x ∣ ∣ s y m b f(x)= ||x||_{symb} f(x)=xsymb,其中下标是指该范数所表示的含义。
  2. 范数是向量x长度的度量, 我们可以测量两个向量x和y之间的距离,作为它们之差的长度:
    在这里插入图片描述
    我们用范数 ∣ ∣ ⋅ ∣ ∣ ||·|| 表示向量x,y之间的距离,表示为 d i s t ( x , y ) dist(x,y) dist(x,y)
  3. 范数 ∣ ∣ ⋅ ∣ ∣ ||·|| 小于或等于1的所有向量的集合被称为单位球:
    在这里插入图片描述
    单位球满足下面这些特性:
    在这里插入图片描述

三、几种范数的例子

  1. 最简单的范数就是实数空间上的绝对值。
  2. n维空间上的 Euclidean范数(又称 L 2 L_2 L2 范数),表示两个向量x和y之间的距离
  3. L 1 L_1 L1 范数: n维空间上的每个元素的绝对值之和,如下所示:
    在这里插入图片描述
  4. L ∞ L_∞ L 范数,又称切比雪夫(Chebyshev)范数,如下所示:
    在这里插入图片描述
  5. 考虑更一般的情况: L p L_p Lp 范数:
    在这里插入图片描述
    L 1 L_1 L1 范数和 L 2 L_2 L2 范数分别是p等于1和2的特殊情况。

总结

范数(norm)是数学中的一种基本概念。在泛函分析中,它定义在赋范线性空间中,并满足一定的条件,即①非负性;②齐次性;③三角不等式。它常常被用来度量某个向量空间(或矩阵)中的每个向量的长度或大小。范数在最优化理论中,经常可以被看到用作例子来说明问题,因此是一个非常重要的概念。

相关推荐
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页