numpy学习2

二、基本运算

2.1 + - * / ^:

>>: a=np.array([[1,2],
>>                      [2,3]])


>>: b=np.array([[2,3],
>>                     [3,4]])

a+b
>>array([[3, 5],
               [5, 7]])

a*b
>>array([[ 2,  6],
               [ 6, 12]])

a**2      #平方
>>array([[1, 4],
               [4, 9]])

a**3      #三次方
>>array([[ 1,  8],
               [ 8, 27]])

2.2 向量乘积

a.dot(b)
>>array([[ 8, 11],
               [13, 18]])
np.dot(a,b)
>>array([[ 8, 11],
               [13, 18]])

2.3 随机向量

b=np.random.random((2,3))    #2行3列(0-1)的向量
>>array([[ 0.82625779,  0.25531431,  0.28451412],
               [ 0.56141861,  0.05890849,  0.07686475]])

思考:2行3列(-pi 到 pi)的向量?
numpy random讲解: http://blog.csdn.net/vicdd/article/details/52667709点击打开链接
#非常感谢 vicdd的文章,非常好的文章

#随机向量还可以输出他的sum ,max ,min
如:b.sum, b.max , b.min
>>> b = np.arange(12).reshape(3,4)
>>> b
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])
>>>
>>> b.sum(axis=0)                            # sum of each column
array([12, 15, 18, 21])
>>>
>>> b.min(axis=1)                            # min of each row
array([0, 4, 8])
>>>
>>> b.cumsum(axis=1)                         # cumulative sum along each row
array([[ 0,  1,  3,  6],
       [ 4,  9, 15, 22],
       [ 8, 17, 27, 38]])
希望大家把这个例子牢记

2.4 内置方法

>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)     #指数
array([ 1.        ,  2.71828183,  7.3890561 ])
>>> np.sqrt(B)
array([ 0.        ,  1.        ,  1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([ 2.,  0.,  6.])

2.5 切片

#感谢梁左嘉懿 非常好的文章

学习要不断的横向和纵向的扩展,不要怕花时间


下章有关numpy的学习,我会在最后贴出一些函数,希望你能点进去学习

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值