二、基本运算
2.1 + - * / ^:
>>: a=np.array([[1,2],
>> [2,3]])
>>: b=np.array([[2,3],
>> [3,4]])
>> [2,3]])
>>: b=np.array([[2,3],
>> [3,4]])
a+b
>>array([[3, 5],
[5, 7]])
[5, 7]])
a*b
>>array([[ 2, 6],
[ 6, 12]])
[ 6, 12]])
a**2 #平方
>>array([[1, 4],
[4, 9]])
[4, 9]])
a**3 #三次方
>>array([[ 1, 8],
[ 8, 27]])
[ 8, 27]])
2.2 向量乘积
a.dot(b)
>>array([[ 8, 11],
[13, 18]])
[13, 18]])
np.dot(a,b)
>>array([[ 8, 11],
[13, 18]])
[13, 18]])
2.3 随机向量
b=np.random.random((2,3)) #2行3列(0-1)的向量
>>array([[ 0.82625779, 0.25531431, 0.28451412],
[ 0.56141861, 0.05890849, 0.07686475]])
[ 0.56141861, 0.05890849, 0.07686475]])
思考:2行3列(-pi 到 pi)的向量?
numpy random讲解: http://blog.csdn.net/vicdd/article/details/52667709点击打开链接
#非常感谢
vicdd的文章,非常好的文章
#随机向量还可以输出他的sum ,max ,min
如:b.sum, b.max , b.min
2.4 内置方法
2.5 切片
#感谢梁左嘉懿 非常好的文章
学习要不断的横向和纵向的扩展,不要怕花时间
下章有关numpy的学习,我会在最后贴出一些函数,希望你能点进去学习