【工具】1755- Wiseone:用 AI 帮助你高效阅读和学习

26baec23777dc45b34db03335742d408.jpeg

关注 “AI 工具派”

探索最新 AI 工具,发现 AI 带来的无限可能性!

「近期热门」

  1. Knit:专业的 Prompt 管理和调试工具

  2. Claude2:GPT4 强劲竞争对手来了,完全免费!

  3. AI Colors:轻松定制你的网页配色方案

  4. Albus:探索你的无限创意

  5. PMAI:优秀的产品经理 AI 帮手

  6. Forefront Chat:免费的 GPT-4 聊天机器人

  7. Codeium:强大且免费的AI智能编程助手

今天 Chris 给大家推荐的工具是 Wiseone,一款可以帮助你「极大提升阅读和学习效率」的浏览器插件,Chris 使用了 1 个多月,感觉非常好用,现在就来和大家分享一下。

工具地址:https://wiseone.io/

4f0f42f6383d65362395e22db331f00d.png

一、工具介绍 🛠️

Wiseone 是一款基于人工智能的浏览器扩展,为用户带来更加高效和丰富的阅读体验,无论用户阅读的是新闻、博客、研究论文还是社交媒体帖子等,Wiseone 都可以帮助用户轻松理解和学习。

a879704eea45eaf32124f171a8f2d6ec.png

二、快速上手 🚀

Chris 以谷歌浏览器为例介绍,我们可以在谷歌应用商店搜索并下载“Wiseone”,也可以从官网进入下载。接下来我们进入需要阅读的网页,然后点击页面右下角“「Wiseone」”按钮,并“「允许 Wiseone 阅读该网页」”:

9f4555cf92f3c0480e1796354e3b9fee.png

等待页面自动刷新后,再次点击“「Wiseone」”按钮,就能看到弹窗。Chris 以最常用的“「提问和总结文章」”进行演示:

59c9239af88e66f0161ee8d557bed657.png

这样我们就可以轻松的总结任何网站的内容,帮助我们更高效的阅读和学习~

三、核心功能 🔍

Wiseone 提供五种强大的功能:「聚焦」「交叉检查」「总结」「探索」「提问」,接下来 Chris 会介绍「聚焦」「总结」「提问」这三个非常棒的功能,其他功能大家可以自行体验。

聚焦

Wiseone 提供的焦点功能,可以让用户在任何文章中,就可以轻松查找和复杂的概念和单词。我们只需将鼠标悬停或单击文章中「浅蓝色下划线的单词」即可显示一个弹窗,显示找到该单词的定义、最相关的网站链接等。

c45414cb6c0da96f92e452ef2d5cac94.png

提问

这个就是前面“快速上手”章节介绍的功能,我们可以向 Wiseone 提各种关于当前正在阅读的这篇文章的任何问题,比如 Chris 当前正在阅读 Vue3 的文档:

f381f00083384e0086e87d26ac68e9b3.png

这样就能轻松地从当前页面内容中获取到所需要的答案,即使当前文档是英文,也可以输出中文的结果。

总结

通过点击 Wiseone 的 「Summarize(摘要)」 按钮,Wiseone 将为用户找到有关文章的关键要点和摘要,更高效地阅读,并且不会丢失任何重要信息。

32f817c117595c71a16690cb19f08768.png

四、收费情况 💰

目前 Wiseone 「完全免费」~!

五、总结 📝

Wiseone 是一款可以帮助你「极大提升阅读和学习效率」的浏览器插件,它提供的“聚焦”、“提问”和“总结”三个主要功能,可以非常快速的帮助用户提升阅读和学习效率。非常适合阅读和学习的用户使用,也包括 Chris。

大家赶紧一起体验看看咯~

这里是“「AI工具派」”,探索最新AI工具,发现AI带来的无限可能性。我们下一期见。

HISTORY

/

往期推荐

15 款 AI 工具让你设计更高效、更优秀!

ChatGPT 多功能利器:24 个应用场景大盘点

Codeium:强大且免费的AI智能编程助手

这 5 款 AI 绘图工具,让你的绘图更高效!

高效办公!5款腾讯免费AI工具

推荐 20 款顶级 AI 聊天机器人

分享收藏点赞在看

变分模态分解(Variational Mode Decomposition, VMD)是一种强大的非线性、无参数信号处理技术,专门用于复杂非平稳信号的分析与分解。它由Eckart Dietz和Herbert Krim于2011年提出,主要针对传统傅立叶变换在处理非平稳信号时的不足。VMD的核心思想是将复杂信号分解为一系列模态函数(即固有模态函数,IMFs),每个IMF具有独特的频率成分和局部特性。这一过程与小波分析或经验模态分解(EMD)类似,但VMD通过变分优化框架显著提升了分解的稳定性和准确性。 在MATLAB环境中实现VMD,可以帮助我们更好地理解和应用这一技术。其核心算法主要包括以下步骤:首先进行初始化,设定模态数并为每个模态分配初始频率估计;接着采用交替最小二乘法,通过交替最小化残差平方和以及模态频率的离散时间傅立叶变换(DTFT)约束,更新每个模态函数和中心频率;最后通过迭代优化,在每次迭代中优化所有IMF的幅度和相位,直至满足停止条件(如达到预设迭代次数或残差平方和小于阈值)。 MATLAB中的VMD实现通常包括以下部分:数据预处理,如对原始信号进行归一化或去除直流偏置,以简化后续处理;定义VMD结构,设置模态数、迭代次数和约束参数等;VMD算法主体,包含初始化、交替最小二乘法和迭代优化过程;以及后处理,对分解结果进行评估和可视化,例如计算每个模态的频谱特性,绘制IMF的时频分布图。如果提供了一个包含VMD算法的压缩包文件,其中的“VMD”可能是MATLAB代码文件或完整的项目文件夹,可能包含主程序、函数库、示例数据和结果可视化脚本。通过运行这些代码,可以直观地看到VMD如何将复杂信号分解为独立模态,并理解每个模态的物理意义。 VMD在多个领域具有广泛的应用,包括信号处理(如声学、振动、生物医学信号分析)、图像处理(如图像去噪、特征提取)、金融时间序列分析(识
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值