Spark的三种join笔记

准备数据:
    orders:(订单t1)
                order_id      driver_id
                 1000           5000
                 1001           5001
                 1002           5002
    drivers:(司机表t2)
               driver_id      car_id
                5000            100
                5003            103
spark三种连接join
     join:自然连接,输出连接键匹配的记录
                       测试:hive (gulfstream_test)> select * from orders t1 join drivers t2 on (t1.driver_id = t2.driver_id) ;
                       结果:
                                t1.order_id     t1.driver_id    t2.driver_id    t2.car_id
                                  1000               5000          5000             100
     left-outer-join:左外链接,输出连接键匹配的记录,左侧的表无论匹配与否都输出。
                       测试:hive (gulfstream_test)> select * from orders t1 left outer join drivers t2 on (t1.driver_id = t2.driver_id);
                       结果:
                                t1.order_id     t1.driver_id    t2.driver_id    t2.car_id
                                    1000            5000             5000           100
                                    1001             5001             NULL          NULL
                                    1002             5002             NULL          NULL

     right-outer-join:右外连接,输出连接键匹配的记录,右侧的表无论匹配与否都输出。
                       测试:hive (gulfstream_test)> select * from orders t1 right outer join drivers t2 on (t1.driver_id = t2.driver_id) ;
                       结果:
                                t1.order_id     t1.driver_id    t2.driver_id    t2.car_id
                                   1000             5000            5000           100
                                   NULL             NULL            5003           103
3、Spark描述
       spark实现join的方式也是通过RDD的算子,spark同样提供了三个算子join,leftOuterJoin,rightOuterJoin。
在下面给出的例子中,我们通过spark-hive读取了Hive中orders表和drivers表中的数据,这时候数据的表现形式是DataFrame,如果要使用Join操作:
        1)首先需要先将DataFrame转化成了JavaRDD。
        2)不过,JavaRDD其实是没有join算子的,下面还需要通过mapToPair算子将JavaRDD转换成JavaPairRDD,这样就可以使用Join了。
需要指出的是
         1)join算子(join,leftOuterJoin,rightOuterJoin)只能通过PairRDD使用;
         2)join算子操作的Tuple2<Object1, Object2>类型中,Object1是连接键,我只试过Integer和String,Object2比较灵活,甚至可以是整个Row。
这里我们使用driver_id作为连接键。 所以在输出Tuple2的时候,我们将driver_id放在了前面。


public class Join implements Serializable {
    private transient JavaSparkContext javaSparkContext;
    private transient HiveContext hiveContext;
    /*
    *   初始化Load
    *   创建sparkContext, sqlContext, hiveContext
    * */
    public Join() {
        initSparckContext();
        initHiveContext();
    }

    /*
    *   创建sparkContext
    * */
    private void initSparckContext() {
        String warehouseLocation = System.getProperty("user.dir");
        SparkConf sparkConf = new SparkConf()
                .setAppName("spark-join")
                .set("spark.sql.warehouse.dir", warehouseLocation)
                .setMaster("yarn-client");
        javaSparkContext = new JavaSparkContext(sparkConf);
    }

    /*
    *   创建hiveContext
    *   用于读取Hive中的数据
    * */
    private void initHiveContext() {
        hiveContext = new HiveContext(javaSparkContext);
    }


    public void join() {
        /*
        *   生成rdd1
        * */
        String query1 = "select * from gulfstream_test.orders";
        DataFrame rows1 = hiveContext.sql(query1).select("order_id", "driver_id");
        JavaPairRDD<String, String> rdd1 = rows1.toJavaRDD().mapToPair(new PairFunction<Row, String, String>() {
            @Override
            public Tuple2<String, String> call(Row row) throws Exception {
                String orderId = (String)row.get(0);
                String driverId = (String)row.get(1);
                return new Tuple2<String, String>(driverId, orderId);
            }
        });
        /*
        *   生成rdd2
        * */
        String query2 = "select * from gulfstream_test.drivers";
        DataFrame rows2 = hiveContext.sql(query2).select("driver_id", "car_id");
        JavaPairRDD<String, String> rdd2 = rows2.toJavaRDD().mapToPair(new PairFunction<Row, String, String>() {
            @Override
            public Tuple2<String, String> call(Row row) throws Exception {
                String driverId = (String)row.get(0);
                String carId = (String)row.get(1);
                return new Tuple2<String, String>(driverId, carId);
            }
        });
        /*
        *   join
        * */
        System.out.println(" ****************** join *******************");
        JavaPairRDD<String, Tuple2<String, String>> joinRdd = rdd1.join(rdd2);
        Iterator<Tuple2<String, Tuple2<String, String>>> it1 = joinRdd.collect().iterator();
        while (it1.hasNext()) {
            Tuple2<String, Tuple2<String, String>> item = it1.next();
            System.out.println("driver_id:" + item._1 + ", order_id:" + item._2._1 + ", car_id:" + item._2._2 );
        }

        /*
        *   leftOuterJoin
        * */
        System.out.println(" ****************** leftOuterJoin *******************");
        JavaPairRDD<String, Tuple2<String, Optional<String>>> leftOuterJoinRdd = rdd1.leftOuterJoin(rdd2);
        Iterator<Tuple2<String, Tuple2<String, Optional<String>>>> it2 = leftOuterJoinRdd.collect().iterator();
        while (it2.hasNext()) {
            Tuple2<String, Tuple2<String, Optional<String>>> item = it2.next();
            System.out.println("driver_id:" + item._1 + ", order_id:" + item._2._1 + ", car_id:" + item._2._2 );
        }

        /*
        *   rightOuterJoin
        * */
        System.out.println(" ****************** rightOuterJoin *******************");
        JavaPairRDD<String, Tuple2<Optional<String>, String>> rightOuterJoinRdd = rdd1.rightOuterJoin(rdd2);
        Iterator<Tuple2<String, Tuple2<Optional<String>, String>>> it3 = rightOuterJoinRdd.collect().iterator();
        while (it3.hasNext()) {
            Tuple2<String, Tuple2<Optional<String>, String>> item = it3.next();
            System.out.println("driver_id:" + item._1 + ", order_id:" + item._2._1 + ", car_id:" + item._2._2 );
        }
    }

    public static void main(String[] args) {
        Join sj = new Join();
        sj.join();
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值