常微分方程
本节大纲内容
考试要求
-
理解微分方程及其阶、解、通解、初始条件和特解等概念.
掌握变量可分离的微分方程及一阶线性微分方程的解法.
会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.
会用降阶法解下列形式的微分方程:f(x,y',y'')=0,f(y,y',y'')=0.
理解线性微分方程解的性质及解的结构.
掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
会解欧拉方程.
会用微分方程解决一些简单的应用问题.
考试内容
-
常微分方程的基本概念
-
变量可分离的微分方程
-
齐次微分方程
-
一阶线性微分方程
可以直接记忆结论,直接运用于解题。如有需要则看以下推理过程。
(1)一阶齐次线性微分方程
(2)一阶非齐次线性微分方程
-
伯努利方程
推理过程如下:
-
全微分方程
-
可用简单的变量代换求解的某些微分方程
其实这个是说明求解微分方程的换元思想,在其他求微分方程的方法中已经使用了换元思想。没有必要在此详细说明。
简单说一下,求解微分方程并不难,因为它有固定的解题思路,只要按着思路来,计算过程不出错都能得到正确答案。
可能原理上理解起来有点难处,但解题只需要用结论即可,没有要求推出原理。
求解微分方程属于看起来难,做起来容易的题型。 -
可降阶的高阶微分方程
-
线性微分方程解的性质及解的结构定理
这里主要考察二阶线性微分方程,那么就以线性微分方程为例来探索。
对于二阶齐次线性微分方程:
方程(1)y’’ + p(x)y’ + q(x) = 0
叠加原理:如果函数y1(x),y2(x)是它的解,则它们的线性组合y=c1y1 + c2y2也是方程(1)的解。
通解结构定理:如果函数y1(x),y2(x)是它的两个线性无关的特解,则y=c1y1 + c2y2也是方程(1)的通解。
这些结论都可以推广到n阶,关于n阶的方程了解即可。
对于二阶非齐次线性微分方程:
方程(2)y‘’ + p(x)y’ + q(x) = f(x)
(1)如果y1,y2是方程(2)的任意两个解,则y1-y2是方程(1)的解。
(2)通解结构定理:如果y0是非齐次线性微分方程的一个特解,Y是对应的齐次线性微分方程的通解,则
y = y0 +Y
是非齐次线性微分方程的通解。
以下补充作为了解即可。
补充1: 非齐次线性微分方程解的叠加原理若非齐次线性微分方程(2)中,f(x) = g(x) + h(x),
而y1,y2分别是方程y‘’ + p(x)y’ + q(x) = g(x)和y‘’ + p(x)y’ + q(x) = h(x)的特解,
那么y = y1+y2是方程(2)的特解
这个被称为非齐次线性微分方程解的叠加原理。补充2:
若y = g1(x) + i g2(x)是方程 y‘’ + py’ + q = f1(x) + i f2(x) 的解,其中p,q是实数,i为虚数单位,
则,g1(x) ,g2(x)分别是方程
y‘’ + py’ + q = f1(x) ,y‘’ + py’ + q = f2(x)
的解 -
二阶常系数齐次线性微分方程
推理如下:
-
简单的二阶常系数非齐次线性微分方程
注解如下:
结合两个例题来说明:
-
高于二阶的某些常系数齐次线性微分方程
-
欧拉方程
-
微分方程的简单应用
主要还是微分方程的解法,应用题是根题意列出微分方程,再求解。
关键点:
(1)列出微分方程
(2)解微分方程
了解即可,可适当找一些练习题。重点还是求解微分方程。