2020考研数学一大纲之完全解析(八)

本文全面概述常微分方程的基础概念与解法,涵盖变量分离、一阶线性、伯努利方程等各类微分方程的求解技巧,深入解析线性微分方程的解的性质与结构,以及二阶常系数线性微分方程的解法,辅以欧拉方程与微分方程的应用实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本节大纲内容

考试要求

  1. 理解微分方程及其阶、解、通解、初始条件和特解等概念.
  2. 掌握变量可分离的微分方程及一阶线性微分方程的解法.
  3. 会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.
  4. 会用降阶法解下列形式的微分方程:f(x,y',y'')=0,f(y,y',y'')=0.
  5. 理解线性微分方程解的性质及解的结构.
  6. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.
  7. 会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.
  8. 会解欧拉方程.
  9. 会用微分方程解决一些简单的应用问题.

考试内容

  • 常微分方程的基本概念

    在这里插入图片描述

  • 变量可分离的微分方程

    在这里插入图片描述
    在这里插入图片描述

  • 齐次微分方程

    在这里插入图片描述

  • 一阶线性微分方程

    在这里插入图片描述
    在这里插入图片描述
    可以直接记忆结论,直接运用于解题。如有需要则看以下推理过程。
    (1)一阶齐次线性微分方程
    在这里插入图片描述
    (2)一阶非齐次线性微分方程
    在这里插入图片描述

  • 伯努利方程

    在这里插入图片描述
    推理过程如下:
    在这里插入图片描述

  • 全微分方程

    在这里插入图片描述

  • 可用简单的变量代换求解的某些微分方程

    其实这个是说明求解微分方程的换元思想,在其他求微分方程的方法中已经使用了换元思想。没有必要在此详细说明。
    简单说一下,求解微分方程并不难,因为它有固定的解题思路,只要按着思路来,计算过程不出错都能得到正确答案。
    可能原理上理解起来有点难处,但解题只需要用结论即可,没有要求推出原理。
    求解微分方程属于看起来难,做起来容易的题型。

  • 可降阶的高阶微分方程

    在这里插入图片描述
    在这里插入图片描述

  • 线性微分方程解的性质及解的结构定理

    这里主要考察二阶线性微分方程,那么就以线性微分方程为例来探索。
    对于二阶齐次线性微分方程:
    方程(1)y’’ + p(x)y’ + q(x) = 0
    叠加原理:如果函数y1(x),y2(x)是它的解,则它们的线性组合y=c1y1 + c2y2也是方程(1)的解。
    通解结构定理:如果函数y1(x),y2(x)是它的两个线性无关的特解,则y=c1y1 + c2y2也是方程(1)的通解。
    这些结论都可以推广到n阶,关于n阶的方程了解即可。
    对于二阶非齐次线性微分方程:
    方程(2)y‘’ + p(x)y’ + q(x) = f(x)
    (1)如果y1,y2是方程(2)的任意两个解,则y1-y2是方程(1)的解。
    (2)通解结构定理:如果y0是非齐次线性微分方程的一个特解,Y是对应的齐次线性微分方程的通解,则
    y = y0 +Y
    是非齐次线性微分方程的通解。
    以下补充作为了解即可。
    补充1: 非齐次线性微分方程解的叠加原理

    若非齐次线性微分方程(2)中,f(x) = g(x) + h(x),
    而y1,y2分别是方程y‘’ + p(x)y’ + q(x) = g(x)和y‘’ + p(x)y’ + q(x) = h(x)的特解,
    那么y = y1+y2是方程(2)的特解
    这个被称为非齐次线性微分方程解的叠加原理。

    补充2:
    若y = g1(x) + i g2(x)是方程 y‘’ + py’ + q = f1(x) + i f2(x) 的解,其中p,q是实数,i为虚数单位,
    则,g1(x) ,g2(x)分别是方程
    y‘’ + py’ + q = f1(x) ,y‘’ + py’ + q = f2(x)
    的解

  • 二阶常系数齐次线性微分方程

    在这里插入图片描述
    在这里插入图片描述
    推理如下:
    在这里插入图片描述

  • 简单的二阶常系数非齐次线性微分方程

    在这里插入图片描述
    注解如下:
    结合两个例题来说明:
    在这里插入图片描述
    在这里插入图片描述

  • 高于二阶的某些常系数齐次线性微分方程

    在这里插入图片描述

  • 欧拉方程

    在这里插入图片描述

  • 微分方程的简单应用

    主要还是微分方程的解法,应用题是根题意列出微分方程,再求解。
    关键点:
    (1)列出微分方程
    (2)解微分方程
    了解即可,可适当找一些练习题。重点还是求解微分方程。

补充

  • 高阶线性微分方程

    在这里插入图片描述
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值