
计算机视觉
Charles.zhang
朝闻道,夕死可矣。路漫漫其修远兮,吾将上下而求索。
-
转载 opencv-python读取tiff影像,并展示
pencv-python可以读取各类图片,然后对图像进行处理,结合矩阵操作,可以非常方便的对图像进行各类操作,下面就展示一个简单的demo,用opencv-python读取图像并展示出来。Opencv的库安装可能比较麻烦一点。# 导入cv模块import cv2 as cvimport numpy as np# 读取图像,支持 bmp、jpg、png、tiff 等常用格式# 第二个参数是通道数和位深的参数,有四种选择,参考https://www.cnblogs.com/goushib2020-10-01 22:44:032146
0
-
转载 浅谈python下tiff图像的读取和保存方法
对比测试scipy.misc和PIL.Image和libtiff.TIFF三个库输入:1. (读取矩阵) 读入uint8、uint16、float32的lena.tif2. (生成矩阵) 使用numpy产生随机矩阵,float64的matimportnumpyasnpfromscipyimportmiscfromPILimportImagefromlibtiffimportTIFF## 读入已有图像,数据类型和原图像一致tif32=mis...2020-10-01 22:38:391261
0
-
转载 python中使用gdal,osgeo
目的:实现fromosgeoimportgdal工具:win10,vc2015,gdal-2.2.2,download.osgeo.org/gdal/2.2.2/(用的13M的那个,我估计是64位的,就按64位操作了)py3.5(anaconda4.2.0)说明:1.用的cmd命令行编译gdal(只编译了gdal,参考了blog.csdn.net/cmfootball/article/details/19981833)2.python版本是anaconda...2020-10-01 22:34:111311
0
-
转载 python3+osgeo处理高分影像初探
之前用IDL写高分预处理的时候,就有想过可不可以用python+GDAL写,可是一直卡在了第一步的正射校正,gdal.Warp()函数始终找不到放DEM的位置,最近终于找到了。我尝试了一景1.3G的GF1/WFV,采用ENVI/IDL的脚本运行每次都需要500s以上,而python3+osgeo则稳定在惊人的15s以内!就速度而言,python3+osgeo远远快于ENVI接口。以下是今天写的简单的代码,包括解压函数,正射校正函数和融合函数(GDAL的融合方法只有默认的加权brovey变换)。运行了一景2020-10-01 22:30:57723
3
-
转载 基于深度学习的行人重识别研究综述 罗浩.ZJU
前言:行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到质量非常高的人脸图片。当人脸识别失效的情况下,ReID就成为了一个非常重要的替代品技术。ReID有一个非常重要的特性就是跨摄像头,所以学术论文里评价性能的时候,是要检索出不同摄像头下的相同行人图片。2020-08-18 20:28:34367
0
-
转载 YOLOV3剪枝源码阅读---模型部署加速
YOLOV3剪枝论文:Network Slimming-Learning Efficient Convolutional Networks through Network Slimming剪枝项目参考https://github.com/tanluren/yolov3-channel-and-layer-pruning主要思路 1、利用batch normalization中的缩放因子γ 作为重要性因子,即γ越小,所对应的channel不太重要,就可以裁剪(pruning)。 22020-08-12 18:08:14466
1
-
转载 【从零开始学习YOLOv3】3. YOLOv3的数据加载机制和增强方法
前言:本文主要讲YOLOv3中数据加载部分,主要解析的代码在utils/datasets.py文件中。通过对数据组织、加载、处理部分代码进行解读,能帮助我们更快地理解YOLOv3所要求的数据输出要求,也将有利于对之后训练部分代码进行理解。1. 标注格式在上一篇【从零开始学习YOLOv3】2. YOLOv3中的代码配置和数据集构建 中,使用到了voc_label.py,其作用是将xml文件转成txt文件格式,具体文件如下:# class id, x, y, w, h0 0.86041666.2020-08-12 18:00:42430
1
-
转载 利用Numpy中的ascontiguousarray可以是数组在内存上连续,加速计算
1. 概述在使用Numpy的时候,有时候会遇到下面的错误:AttributeError: incompatible shape for a non-contiguous array看报错的字面意思,好像是不连续数组的shape不兼容。有的时候,在看别人代码时会看到ascontiguous()这样的一个函数,查文档会发现函数说明只有一句话:"Return a contiguous array (ndim >= 1) in memory (C order)."光靠这些信息,似乎没能道出Nu2020-08-12 16:41:42287
0
-
转载 np.flipud()将矩阵倒序
np.flipud()将矩阵倒序np.flipud()函数可以将矩阵里面的值倒序.注意:只是在第一个维度上进行倒序哦.例如:>>> arr = np.arange(6)>>> arrarray([0, 1, 2, 3, 4, 5])>>> np.flipud(arr)array([5, 4, 3, 2, 1, 0])如果是多维矩阵也只是在第一个维度上进行倒序.>>> A = np.diag([1.0,2020-08-12 15:35:43296
0
-
转载 np.eye()和np.identity()
今天在完成深度学习的相关编程作业的时候,发现代码中出现了一个关于np.eye()的函数,这个函数的用法非常的简单,但是在预制的代码中,这个函数的用法并非单单制造一个对角矩阵,而是通过其来将一个label数组,大小为(1,m)或者(m,1)的数组,转化成one-hot数组。例如他可以将类别总数为6的labels=[1,2,3,0,1,1]的数组转化成数组[[0,1,0,0,0,0],[0,0,1,0,0,0],[0,0,0,1,0,0],[0,0,0,0,0,0],[0,1,0,0,0,0],[0,1,0,02020-08-12 15:30:2490
0