李嘉图123
码龄8年
关注
提问 私信
  • 博客:29,214
    29,214
    总访问量
  • 8
    原创
  • 1,903,621
    排名
  • 10
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:安徽省
  • 加入CSDN时间: 2016-10-16
博客简介:

qq_36411093的博客

查看详细资料
个人成就
  • 获得17次点赞
  • 内容获得2次评论
  • 获得54次收藏
创作历程
  • 4篇
    2019年
  • 6篇
    2018年
成就勋章
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

yolov3网络架构以及代码解析二

#! /usr/bin/env python3# coding=utf-8#================================================================# Copyright (C) 2018 * Ltd. All rights reserved.## Editor : VIM# File name : yo...
原创
发布博客 2019.03.14 ·
989 阅读 ·
0 点赞 ·
1 评论 ·
5 收藏

YOLOv3网络架构以及代码细节解析(一)

看了yolo3的论文但是作者只是在文中说了一些他对于网络的改进,没有网络结构也没有损失函数,想着把代码看一下,看了一天,终于yolo有了一个很初步的了解,话不多说,一下是点击此处我用的yolov3代码,是基于tensorflow实现的,我用tensorboard可视化了整个网络,提取码bvvz,我将从网络和损失函数来分析。作者在yolo3中搞了一个53层的darknet,代码如下:可以看到作...
原创
发布博客 2019.03.14 ·
12988 阅读 ·
7 点赞 ·
0 评论 ·
38 收藏

YOLO-tensorflow代码解析二(yolo_net.py)

import numpy as npimport tensorflow as tfimport yolo.config as cfgslim = tf.contrib.slimclass YOLONet(object): def __init__(self, is_training=True): self.classes = cfg.CLASSES #有哪...
原创
发布博客 2019.03.11 ·
388 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

YOLO-tensorflow代码解析一(pascal_voc)

import osimport xml.etree.ElementTree as ETimport numpy as npimport cv2import pickleimport copyimport yolo.config as cfgclass pascal_voc(object): def __init__(self, phase, rebuild=False):...
原创
发布博客 2019.03.10 ·
558 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

tf.sparse_to_dense()函数理解

今天看代码的时候看到一个陌生的函tf.sparse_to_dense(),看了很多博客感觉都没有解释到点子上,看了函数才有了一点理解,记录如下:import tensorflow as tfimport numpyindices = tf.reshape(tf.range(0, 10 ,1), [10, 1])labels=tf.expand_dims(tf.constant([0,2,3...
原创
发布博客 2018.12.29 ·
10591 阅读 ·
7 点赞 ·
1 评论 ·
7 收藏

Resnet网络理解

最近看了何凯明大神的Resnet写篇博客记录一下便于以后学习。Introduction近两年来,随着深度学习不断火热,人们发现网络的深度往往对模型的效果有着质的影响,网络越深模型的效果就会越好,这通常是由于随着网络的加深可以学习到更加高级的feature。但是,随着网络的加深也会伴随着一定的问题。第一个问题就是梯度消失以及梯度爆炸的问题,这个问题我们可以通过normalized initial...
原创
发布博客 2018.12.27 ·
746 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Densenet网络理解

自从resnet之后人们开始讲不同层之间做不同的连接以期望得到更好的结果,本文的作者就提出了一种新的连接结构,并且有效的减轻了梯度消失的问题,加强了特征的传递,有效的理由了特征,减少了参数的数量以及计算量。网络结构我们可以发现每一层的输入来自前面所有层的输出。densenet和其他网络对比在resnet中前一层的输入和后一层的输入是相加到一起的,这在某种程度上阻碍了信息在网络中的流动,但...
原创
发布博客 2018.12.27 ·
1966 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

Computer-Aided Detection and diagnosis for prostate cancer based on mono and multi-parametric MRI

这篇文章系统的介绍了前列腺癌症辅助诊断的各种论文以及基本的流程,非常适合新手阅读。Abstract前列腺癌症是世界上男性发病率第二高的癌症,近些年随着磁共振(MRI)技术的兴起,使得前列腺癌症的诊断大大提升。但是在诊断的过程中也伴随这许多问题,例如医生经验的不同以及病灶的多样性,这些都为诊断带来了困难,在这种情况下,计算机辅助诊断技术应运而生。本文章就是介绍了前列腺癌症计算机辅助诊断的一些基本...
原创
发布博客 2018.12.27 ·
548 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

U-Net: Convolutional Networks for Biomedical Image Segmentation

https://blog.csdn.net/zxyhhjs2017/article/details/78659044https://blog.csdn.net/asun0204/article/details/79006672
转载
发布博客 2018.11.05 ·
125 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

交叉熵在机器学习中的应用

版权声明:本文为博主原创文章,转载请注明出处。 https://blog.csdn.net/tsyccnh/article/details/79163834 关于交叉熵在loss函数中使用的理解交叉熵(cross entropy)是深度学习中常用的一个概念,一般用...
转载
发布博客 2018.11.05 ·
287 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏