经典JS闭包题

在逛博客时,看见一个很有意思的闭包题,发现自己对闭包没有完全理解,故记录下来。

先看题目代码:

function fun(n,o) {
  console.log(o)
  return {
    fun:function(m){
      return fun(m,n);
    }
  };
}
var a = fun(0);  a.fun(1);  a.fun(2);  a.fun(3);//undefined,?,?,?
var b = fun(0).fun(1).fun(2).fun(3);//undefined,?,?,?
var c = fun(0).fun(1);  c.fun(2);  c.fun(3);//undefined,?,?,?
//问:三行a,b,c的输出分别是什么?

这是一道非常典型的JS闭包问题。其中嵌套了三层fun函数,搞清楚每层fun的函数是那个fun函数尤为重要。

可以先在纸上或其他地方写下你认为的结果,然后看看正确答案是什么?

(没找到展开按钮功能,故不贴答案,放上原文答案地址:https://www.cnblogs.com/xxcanghai/p/4991870.html

1、第一行a

var a = fun(0);  a.fun(1);  a.fun(2);  a.fun(3);

可以得知,第一个fun(0)是在调用第一层fun函数。第二个fun(1)是在调用前一个fun的返回值的fun函数,所以:

第后面几个fun(1),fun(2),fun(3),函数都是在调用第二层fun函数

遂:

在第一次调用fun(0)时,o为undefined;

第二次调用fun(1)时m为1,此时fun闭包了外层函数的n,也就是第一次调用的n=0,即m=1,n=0,并在内部调用第一层fun函数fun(1,0);所以o为0;

第三次调用fun(2)时m为2,但依然是调用a.fun,所以还是闭包了第一次调用时的n,所以内部调用第一层的fun(2,0);所以o为0

第四次同理;

即:最终答案为undefined,0,0,0

 

2、第二行b

var b = fun(0).fun(1).fun(2).fun(3);//undefined,?,?,?

先从fun(0)开始看,肯定是调用的第一层fun函数;而他的返回值是一个对象,所以第二个fun(1)调用的是第二层fun函数,后面几个也是调用的第二层fun函数。

遂:

在第一次调用第一层fun(0)时,o为undefined;

第二次调用 .fun(1)时m为1,此时fun闭包了外层函数的n,也就是第一次调用的n=0,即m=1,n=0,并在内部调用第一层fun函数fun(1,0);所以o为0;

第三次调用 .fun(2)时m为2,此时当前的fun函数不是第一次执行的返回对象,而是第二次执行的返回对象。而在第二次执行第一层fun函数时时(1,0)所以n=1,o=0,返回时闭包了第二次的n,遂在第三次调用第三层fun函数时m=2,n=1,即调用第一层fun函数fun(2,1),所以o为1;

第四次调用 .fun(3)时m为3,闭包了第三次调用的n,同理,最终调用第一层fun函数为fun(3,2);所以o为2;

即最终答案:undefined,0,1,2

 

3、第三行c

var c = fun(0).fun(1);  c.fun(2);  c.fun(3);//undefined,?,?,?

根据前面两个例子,可以得知:

fun(0)为执行第一层fun函数,.fun(1)执行的是fun(0)返回的第二层fun函数,这里语句结束,遂c存放的是fun(1)的返回值,而不是fun(0)的返回值,所以c中闭包的也是fun(1)第二次执行的n的值。c.fun(2)执行的是fun(1)返回的第二层fun函数,c.fun(3)执行的是fun(1)返回的第二层fun函数。

遂:

在第一次调用第一层fun(0)时,o为undefined;

第二次调用 .fun(1)时m为1,此时fun闭包了外层函数的n,也就是第一次调用的n=0,即m=1,n=0,并在内部调用第一层fun函数fun(1,0);所以o为0;

第三次调用 .fun(2)时m为2,此时fun闭包的是第二次调用的n=1,即m=2,n=1,并在内部调用第一层fun函数fun(2,1);所以o为1;

第四次.fun(3)时同理,但依然是调用的第二次的返回值,遂最终调用第一层fun函数fun(3,1),所以o还为1

原文地址:https://www.cnblogs.com/xxcanghai/p/4991870.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值