条件概率 全概率公式 贝叶斯定理

条件概率:

当给定条件 B 发生时, 事件\large A 发生的概率

\large P(A|B)=\frac{P(AB)}{P(B)}

 

全概率公式:

事件 \large A 发生有多种情况,求最终事件 \large A  发生的概率

\large P(A)=\sum P(A|B_{i})P(B_{i})

 

 

贝叶斯定理:

核心:  先验概率 + 新的信息【某些结果】   \large \Rightarrow  后验概率

 

多种原因: 我们知道最终发生的结果,计算每种原因的概率。 【知道结果,询问原因

 

举个栗子:

我们知道自己考上清北的概率很低, 可以看做是 0.005%,

但是我们发现去年学院有一个学长考上了北大软微,所以我们也很激动,想着自己是不是也可以,这里面虽然有着

鸡汤的成分,感觉还是比较好的一个栗子。

 

将上面的故事转换成数学公式:

A:考上清北

B:学长考上清北

 

我们知道了 “学长考上北大” 这个消息之后,现在眼中对于考上清北的认识:

\large P(A|B)=P(A)\frac{P(B|A)}{P(B)}

A事件本身是小概率,可能这一个信息调整就会直接影响我们的认识,鸡汤虽好,不要贪杯。

 

 

贝叶斯公式阐述了:

 

NLP和贝叶斯:

语法是人类后来总结出来的,我们天生是不需要语法就可以开口说话的,或许,人脑真的是贝叶斯大脑。

 

 

 

参考:

1. https://www.zhihu.com/question/19725590/answer/217025594

2. https://blog.csdn.net/Hearthougan/article/details/75174210

发布了660 篇原创文章 · 获赞 29 · 访问量 12万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览