【Python】 numpy.loadtxt() OSError: xxx.txt not found文件找不到异常

python 专栏收录该内容
1 篇文章 0 订阅

Python numpy.loadtxt OSError: xxx.txt not found文件找不到异常


问题

使用np.loadtxt()方法导入文件的时候报错:找不到文件

报错信息

File “D:\python\lib\site-packages\numpy\lib_datasource.py”, line 535, in open
raise IOError("%s not found." % path)
OSError: data.txt not found.

报错代码

dataSet = np.loadtxt('data.txt')

解决

  由于data.txt文件位置和 .py位置在同一目录下。我以为这里输入相对路径是相对于源码py文件而言,那么就写data.txt即可。但是实际上这里传入的相对路径必须从项目根路径开始
  VScode中:右击目标文件,点击复制相对路径myAI\knn\data.txt填入即可,当然这里也可以填绝对路径,但是不提倡。在其他使用到文件路径的地方,这里的\符号可能会被当成转义字符处理,这时候可以替换成/

  • 3
    点赞
  • 4
    评论
  • 3
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

# CNN_UCMerced-LandUse_Caffe(数据:http://vision.ucmerced.edu/datasets/landuse.html) 主要任务:基于深度学习框架完成对光学遥感图像UCMerced LandUse数据集的分类。 数据特点:共包含21类土地类型图片,每类100张,每张像素大小为256*256,数据类内距离大,类间小。 完成情况:数据量太小,训练数据出现过拟合;为了克服这个问题,又减小训练时间,采用caffe框架,在别人训练好的bvlc_reference_caffenwt模型上进行fine-tune,对最后一层设置较大的学习速率,结果取得了93%的正确率;在这基础上又在fc7层上提取了每张图片的4096维特征,进行了SVM分类,取得了95%以上的分类正确率,并对结果做了可视化分析。 环境:ubuntu14.04 + caffe + python(数据划分和增强在用windows10的3.5,其余都是unbuntu下用的2.7) 程序(相关路径需要修改)/步骤: multi_divide_pic.py---多进程进行数据划分(cv2没装成功,建议用cv2,方便) multi_augmentation_pic.py---多进程数据增强 make_caffe_lmdb.py---生成caffe训练需要的数据路径文件,然后修改caffe配置文件 bvlc_reference_caffenet.caffemodel---caffe模型,在上面进行finetune(http://dl.caffe.berkeleyvision.org/?from=message&isappinstalled=1) binaryproto2npy.py---将caffe生成的均值文件转换成.npy格式 cnn_vision_caffe.py---对训练好的模型进行可视化分析 extract_features.py---获取每张图片在fc7层输出的4096维特征 svm_predict.py---使用svm对上述提取的特征进行训练预测 svm_vision.py---对svm模型进行可视化分析 tsne.py---对数据进行降维可视化
©️2021 CSDN 皮肤主题: 书香水墨 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值