damit_wang
码龄8年
关注
提问 私信
  • 博客:16,137
    16,137
    总访问量
  • 9
    原创
  • 1,412,694
    排名
  • 5
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:四川省
  • 加入CSDN时间: 2016-10-19
博客简介:

qq_36443225的博客

查看详细资料
个人成就
  • 获得0次点赞
  • 内容获得0次评论
  • 获得9次收藏
创作历程
  • 2篇
    2017年
  • 9篇
    2016年
TA的专栏
  • cassandra
    2篇
  • storm
    3篇
  • hbase
    3篇
  • kafka
  • flume
  • flink
    2篇
  • spark
创作活动更多

超级创作者激励计划

万元现金补贴,高额收益分成,专属VIP内容创作者流量扶持,等你加入!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

RNN网络代码

发布资源 2018.07.17 ·
py

唐宇迪深度学习讲义

发布资源 2018.07.17 ·
pdf

flink和hbase整合

有两种方式第一种,批处理模式整合,即从hbase查询数据并转为DataSet格式首先引入flink整合hbase的jar(版本号请根据实际调整) org.apache.flink flink-table_2.11 1.1.42 在resource下添加hbase-site.xml文件xml version="1.0"?>xml-style
原创
发布博客 2017.02.20 ·
6740 阅读 ·
0 点赞 ·
0 评论 ·
6 收藏

spark Streaming 和drools整合

最近公司打算把drools引入spark Streaming实时计算引擎,测试了一下,还是很好用对 JavaPairDStream aggregateRecords 执行以下程序,创建drools session,加载配置文件并执行规则,执行后调用ChannAmount的hbaseSave()方法aggregateRecords.foreachRDD(new VoidFunction>()
原创
发布博客 2017.02.09 ·
2971 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

hbase表设计

1 hbase表设计思路以横向扩展为设计方向的表结构(列族中有很多列),能保持多列的原子性,因为行级有事务控制以纵向扩展为设计方向的表结构(把常用查询字段拼入rowkey),能快速查询数据,但损失原子性。实际使用中可以对rowkey用MD5加密,还可以统一长度,提高存取性能(怎么提高)可以利用列名存储数据,64位操作系统内存一次存取8个字节,rowkey最好8个字节的整数倍,尽量不超过
原创
发布博客 2016.10.24 ·
344 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

一致性hash理解

一致性哈希主要应用于分布式集群对机器添加、删除的管理1 按照常用hash算法将要管理的对象映射到一个2^32-1的闭合环形上2 按照常用hash算法将机器映射也映射到此闭合环形上3 以顺时针计算,将要管理的对象纳入离自己最近的机器上4 删除节点时,该机器存储的对象按照顺时针就近原理分配到临近机器上5 增加节点时,按照哈希算法获得机器hash值,然后把临近对象分配到该节点6
原创
发布博客 2016.10.19 ·
420 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

一致性hash

转载请说明出处:http://blog.csdn.net/cywosp/article/details/23397179    一致性哈希算法在1997年由麻省理工学院提出的一种分布式哈希(DHT)实现算法,设计目标是为了解决因特网中的热点(Hot spot)问题,初衷和CARP十分类似。一致性哈希修正了CARP使用的简 单哈希算法带来的问题,使得分布式哈希(DHT)可以在P2P环境中真正得到
转载
发布博客 2016.10.19 ·
167 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

storm 原理

本文翻译自: https://github.com/nathanmarz/storm/wiki/TutorialStorm是一个分布式的、高容错的实时计算系统。Storm对于实时计算的的意义相当于Hadoop对于批处理的意义。Hadoop为我们提供了Map和Reduce原语,使我们对数据进行批处理变的非常的简单和优美。同样,Storm也对数据的实时计算提供了简单Spout和Bolt原语。
转载
发布博客 2016.10.19 ·
284 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

storm 安装启动

stormwget http://mirrors.hust.edu.cn/apache/storm/apache-storm-0.9.5/apache-storm-0.9.5.tar.gzmv apache-storm-0.9.5 /usr/local/ln -s /usr/local/apache-storm-0.9.5 /usr/local/apache-stormvi /et
原创
发布博客 2016.10.19 ·
305 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

hbase存储原理

Hbase 表结构设计注意问题:见过程经验积累--数据库问题 Hbase每个cell插入时都会写入时间戳(当前系统时间)来做版本标识,在读取时如果没有指定时间戳,默认取最新时间。Hbase默认保留3个版本数据。 HBase写入原理1 客户端写入请求-->MemStore同时会写入Hlog,类似于Commit log,做数据恢复用2 MemStore满足条件后刷入Stor
原创
发布博客 2016.10.19 ·
1954 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

cassandra使用

cassandra拷贝文件到csvCOPY airplanes (name, mach, year, manufacturer) TO 'export.csv';cassandra 删除节点1 ./nodetool status获取host id2 ./nodetool removenode 3 ./nodetool removenode status  nodetoo
原创
发布博客 2016.10.19 ·
480 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

cassandra安装管理

1 解压tar zxvf apache-cassandra-2.0.12-bin.tar.gz -C /usr/local/2 进入conf目录,vi cassandra.yaml1> data_file_directories:      - /usr/local/apache-cassandra-2.0.12/data2> commitlog_directory: /usr
原创
发布博客 2016.10.19 ·
542 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

cassandra 存储原理

参考:http://my.oschina.net/jsycwangwei/blog/4202571 Cassandra 通过4个技术来维护数据的最终一致性,分别为逆熵(Anti-Entropy),读修复(Read Repair),提示移交(Hinted Handoff)和分布式删除。逆熵:节点间定期检查数据一致性,使用markle tree,markle tree是hash树,叶节点是ke
原创
发布博客 2016.10.19 ·
1931 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏