01背包的状态转移方程

这类问题算是再普通不过了,但是,我忘了。特别是状态转移方程,记不清怎么推导的了,于是在这里做一下回顾吧
设物品个数为N,每件物品的重量为w[i],价值为v[i],背包承重W,我们用一个二维数组来表示最大收益,于是得到了方程
if w[i]>背包承重j,无法入包:
F[i][j]=F[i-1][j];
else
F[i][j]=max(F[i-1][j],F[i-1][j-w[i]]+v[i]);
这里的F[i-1][j-w[i]]表示的是当前承重j去掉w[i]的最大收益,再加上v[i]就是当前F[i][j]的另一种收益,将这个收益和F[i-1][j]对比得到最大收益。
举个例子:

#include<iostream>
using namespace std;

int main()
{
    int nArr[6][13] = {{0}};
    int nCost[6] = {0 , 2 , 5 , 3 , 10 , 4};  //花费
    int nVol[6]   = {0 , 1 , 3 , 2 , 6 , 2}; //物体体积
    int bagV = 12;

    for( int i = 1; i< sizeof(nCost)/sizeof(int); i++)
    {
        for( int j = 1; j<=bagV; j++)
        {
            if(j<nVol[i])
                nArr[i][j] = nArr[i-1][j];
            else
                nArr[i][j] = max(nArr[i-1][j] , nArr[i-1][j-nVol[i]] + nCost[i]);       
            cout<<nArr[i][j]<<' ';
        }   
        cout<<endl;
    }
    cout<<nArr[5][12]<<endl;

    return 0;
}

代码是我找的别人的,因为我懒得写了(原谅我),贴上代码的原文:
http://blog.csdn.net/FX677588/article/details/68951593
最后在抄这位大佬的一句话:

动态规划(Dynamic Programming,DP)与分治区别在于划分的子问题是有重叠的,解过程中对于重叠的部分只要求解一次,记录下结果,其他子问题直接使用即可,减少了重复计算过程。

  动态规划求解具有以下的性质:
  最优子结构性质、子问题重叠性质
    
  最优子结构性质:最优解包含了其子问题的最优解,不是合并所有子问题的解,而是找最优的一条解线路,选择部分子最优解来达到最终的最优解。
  
  子问题重叠性质:先计算子问题的解,再由子问题的解去构造问题的解(由于子问题存在重叠,把子问题解记录下来为下一步使用,这样就直接可以从备忘录中读取)。其中备忘录中先记录初始状态。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值