pytorch安装最容易实现版本,踩坑无数总结

在安装pytorch的过程中,尝试过在线安装,离线安装清华网站镜像资源,pytorch官方网站离线安装等等方式后,认为最简单并且最不容易出错的安装方式如下:

首先,前提是已经安装好合适版本的cuda、python和anaconda

进入anaconda prompt

  1. 创建环境  conda create -n pytorch-gpu python=3.6(我用的3.6,写你自己python的版本号)
  2. pytorch官方网站下载torch和torchvision的离线whl安装包,torch和torchvision的版本一定要对应,我下的是torch1.5.0和torchvision0.6.0,cuda版本10.1(尝试过从清华镜像网站上下载压缩包资源,但安装后一直各种出错,无法使用)   离线安装包下载地址: https://download.pytorch.org/whl/torch_stable.html
  3. 图中torch后面的数字代表torch版本,cu101代表cuda10.1,cp36代表python3.6版本,win代表windows系统,torchvision同理,一定要对应自己所需要的版本!
    torch与torchvision对照表
    torchtorchvisionpython
    master / nightlymaster / nightly>=3.6
    1.6.00.7.0>=3.6
    1.5.10.6.1>=3.5
    1.5.00.6.0>=3.5
    1.4.00.5.0==2.7>=3.5<=3.8
    1.3.10.4.2==2.7>=3.5<=3.7
    1.3.00.4.1==2.7>=3.5<=3.7
    1.2.00.4.0==2.7>=3.5<=3.7
    1.1.00.3.0==2.7>=3.5<=3.7
    <=1.0.10.2.2==2.7>=3.5<=3.7
  4. 激活刚刚创建的环境  activate pytorch-gpu
  5. 激活后安装已经下载好的安装包   pip install 压缩包保存路径\压缩包名
  6. 查看已经安装的压缩包  pip list
  7. 输入python
  8. 输入  import torch,没有报错即安装成功
  9. 输入 torch.cuda.is_available()查看是否能调用gpu
【课程介绍】       Pytorch项目实战 垃圾分类 课程从实战的角度出发,基于真实数据集与实际业务需求,结合当下最新话题-垃圾分类问题为实际业务出发点,介绍最前沿的深度学习解决方案。     从0到1讲解如何场景业务分析、进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。     课程结合当下深度学习热门领域,尤其是基于facebook 开源分类神器ResNext101网络架构,对网络架构进行调整,以计算机视觉为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。 【课程要求】 (1)开发环境:python版本:Python3.7+; torch 版本:1.2.0+; torchvision版本:0.4.0+ (2)开发工具:Pycharm; (3)学员基础:需要一定的Python基础,及深度学习基础; (4)学员收货:掌握最新科技图像分类关键技术; (5)学员资料:内含完整程序源码和数据集; (6)课程亮点:专题技术,完整案例,全程实战操作,徒手撸代码 【课程特色】 阵容强大 讲师一直从事与一线项目开发,高级算法专家,一直从事于图像、NLP、个性化推荐系统热门技术领域。 仅跟前沿 基于当前热门讨论话题:垃圾分类,课程采用学术届和工业届最新前沿技术知识要点。 实战为先 根据实际深度学习工业场景-垃圾分类,从产品需求、产品设计和方案设计、产品技术功能实现、模型上线部署。精心设计工业实战项目 保障效果 项目实战方向包含了学术届和工业届最前沿技术要点 项目包装简历优化 课程内垃圾分类图像实战项目完成后可以直接优化到简历中 【课程思维导图】 【课程实战案例】
©️2020 CSDN 皮肤主题: 终极编程指南 设计师:CSDN官方博客 返回首页