【深度学习】【CVPR2019】弱监督目标检测C-MIL

本文回顾了MIL方法在弱监督目标检测中的应用,介绍了其实例选择和检测器估计步骤。文章特别讨论了凸性分析,并提出了Continuation MIL,通过在训练过程中使用不同的λ值来改进实例选择,使得提案更具代表性。损失函数随着λ的变化而变化,优化了子集的选择,从而提高检测效果。
摘要由CSDN通过智能技术生成

【CVPR2019】C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection

MIL回顾

介绍

MIL将图片视为“包”, B i ∈ B B_i\in B BiB为第 i i i个包(图片), B B B为所有包, y i ∈ Y , Y = { − 1 , + 1 } y_i\in Y,Y=\{-1,+1\} yiY,Y={ 1,+1}表示 B i B_i Bi是否包含某个类别的物体。比如 y i = 1 y_i=1 yi=1表示一个正的“包”(至少有一个正的实例),

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值