【CVPR2019】C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection
MIL回顾
介绍
MIL将图片视为“包”, B i ∈ B B_i\in B Bi∈B为第 i i i个包(图片), B B B为所有包, y i ∈ Y , Y = { − 1 , + 1 } y_i\in Y,Y=\{-1,+1\} yi∈Y,Y={ −1,+1}表示 B i B_i Bi是否包含某个类别的物体。比如 y i = 1 y_i=1 yi=1表示一个正的“包”(至少有一个正的实例),
本文回顾了MIL方法在弱监督目标检测中的应用,介绍了其实例选择和检测器估计步骤。文章特别讨论了凸性分析,并提出了Continuation MIL,通过在训练过程中使用不同的λ值来改进实例选择,使得提案更具代表性。损失函数随着λ的变化而变化,优化了子集的选择,从而提高检测效果。
最低0.47元/天 解锁文章
679

被折叠的 条评论
为什么被折叠?



