- 博客(14)
- 资源 (1)
- 收藏
- 关注
原创 kube-dashboard离线部署配置
1、修改配置文件wget https://raw.githubusercontent.com/kubernetes/dashboard/master/src/deploy/recommended/kubernetes-dashboard.yaml将image配置为本地仓库中对应的image2、生成dashboard使用的secret2.1生成dashboard.pass.key# op...
2018-12-21 10:01:42 1261
原创 Ceph容器化部署(离线环境)
前提:各节点已安装docker,已部署好局域网docker registry1、节点规划172.17.47.85 aipaas0 admin(启动mon、osd、mgr)172.17.47.86 aipaas1 node1(启动mon、osd)172.17.47.88 aipaas2 node2(启动mon、osd)172.17.47.90 aipaas3 no...
2018-12-20 15:21:02 1655
原创 linux上传文件至sftp
lftp可提供用户名密码登录EOF可执行进入后的命令shell脚本传参用$0,$1等表示,sh xxx.sh hello 中,xxx.sh为参数0,hello为参数1#!/usr/bin/bash#第一个参数为要上传的文件名,相对于/data1/ai_paas/tmp/的路径USER=xxxPASSWORD=xxx#本地路径LOCAL=/xxx#sftp路径REMO...
2018-11-27 17:39:50 1045
原创 kubernetes二进制离线安装(含docker)
环境:CentOS7.4服务器环境是外网隔离状态,所需安装包需要本地下载,远程拷贝至服务器。下载好需要的包后,全部安装过程均为离线安装。一、安装docker下载二进制安装包https://download.docker.com/linux/static/stable/x86_64/1、解压$ tar xzvf docker-18.06.1-ce.tgz2、拷贝至/usr/b...
2018-11-23 16:40:27 1188
原创 构建docker 私有仓库
在要建立仓库的机器上操作如下:1、下载registry镜像docker pull registry2、运行registry 容器,端口为5000,挂载本地存放镜像仓库为/opt/registrysudo docker run -d -v /opt/registry:/var/lib/registry -p 5000:5000 --restart=always registry...
2018-11-23 16:36:27 220
原创 【中文分词】使用LSTM网络实现中文分词
# # 使用LSTM网络实现中文分词本文使用jupyter notebook编辑,导出为py文件,去掉不加注释的本段后可直接执行(前提是下载了整个项目,且文件地址正确配置)。项目git地址为 git@github.com:renmu2017/Segmentor.git 。本文仅介绍主要流程,具体方法的实现在代码中,有需要的朋友可自行下载# 当前中文分词已有很多成熟的模块可直接调用,如哈工...
2018-09-17 15:50:06 6876 4
原创 【AutoML框架】TransmogrifAI配置问题及简要分析
如上一篇所简要介绍,TransmogrifAI可以为机器学习开发者节省大量特征处理及建模时间,官方网站有安装配置过程,以下是我个人配置及调试TransmogrifAI过程中记录的问题及要点。安装:1、安装Scala2.12.*,尽量装12版本,13可能不支持2、安装hadoop和spark2.2.*,同样注意版本号,安装gradle3、下载TransmogrifAI的Release...
2018-09-10 17:55:15 1056
转载 【转载:AutoML框架】TransmogrifAI简介
在过去十年中,尽管机器学习取得了巨大进步,但构建可用的机器学习系统却依然是件难事。三年前,当我们着手把机器学习功能部署到Salesforce平台时,大家才发现,原来构建企业级机器学习系统更加困难。为了解决这个问题,我们开发了TransmogrifAI(发音为trans-mog-ri-phi)——一种用于处理结构化数据的端到端自动化机器学习库,它也是现在Einstein平台优化功能的一个工具。今...
2018-09-10 17:20:24 1056
原创 从零开始用人工智能预测股票(四、方案优化)
根据之前方案呈现的结果,当前存在以下问题:1、大盘数据较少,共6000多条数据,还需要留一部分做测试集2、大盘指数波动幅度较小,因此程序自动预测为0时撞上的几率较大3、网络形式简单,未考虑LSTM网络综上进行方案优化:1、使用上证市场的所有股票数据进行学习,股票数据加上当日大盘数据作为样本2、股票涨跌幅度应该是符合正态分布的,故对标签的分配重新划分,相对0成对称划分,且越靠近0处划分区域越小,以使...
2018-06-07 16:00:17 3684 1
转载 【转载】理解LSTM网络
LSTM网络的特点适合股票这种时序性数据,这篇文章很好地介绍了LSTM网络,特转载留档【转载】https://www.jianshu.com/p/9dc9f41f0b29本文翻译自http://colah.github.io/posts/2015-08-Understanding-LSTMs/理解LSTM网络周期神经网络(Recurrent Neural Networks)人类并非每一秒都在从头开...
2018-03-20 11:25:38 511
原创 从零开始用人工智能预测股票(三、初步实现)
在数据加工好以后,我们用TensorFlow做简单的预测。按之前的做法去读取并加载数据 data,date= dp.readData() train,test,trainLables,testLabels= dp.normalization(data)然后添加变量和参数 x = tf.placeholder("float",[None,109]) w = tf.Vari...
2018-03-19 16:15:15 12493 1
原创 从零开始用人工智能预测股票(二、数据加工)
在聚数力平台上下载的股票数据为csv格式,内容为历史每日股票的基本数据,为了使数据能表现我们对股票预测因素的分析,我们需要对数据进行加工。我们选择上证指数作为示例,原始数据如下图:包括日期,前收盘价,开盘价,最高价,最低价,收盘价,成交量,成交金额,涨跌,涨跌幅。1、首先读取数据,将数据从文件中读入至程序列表中:def readData(): ''' 数据读取,从c...
2018-03-19 16:00:17 5422 1
原创 从零开始用人工智能预测股票(一、特征选取)
随着人工智能的崛起,越来越多的学科正在被人工智能改造,包括金融领域的很多分析决策工作。而神经网络是目前最火的人工智能技术,在我的理解中,神经网络适合处理拥有大量实践数据,数据内部存在某种关系的问题,正好股票的涨跌看起来符合这样的规律。本教程是我自己摸索规律,学习使用算法和TensorFlow工具进行股票预测的记录,持续更新。1、特征选取为了用神经网络模拟大量数据中存在的某些关系,首先需要选取可能对...
2018-03-19 15:32:47 17113 2
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人