HDU 6069 Counting Divisors(素数筛法+枚举+技巧)——2017 Multi-University Training Contest - Team 4

传送门 

Counting Divisors

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 524288/524288 K (Java/Others)
Total Submission(s): 741    Accepted Submission(s): 248


Problem Description
In mathematics, the function  d(n)  denotes the number of divisors of positive integer  n .

For example,  d(12)=6  because  1,2,3,4,6,12  are all  12 ’s divisors.

In this problem, given  l,r  and  k , your task is to calculate the following thing : 
(i=lrd(ik))mod998244353

 

Input
The first line of the input contains an integer  T(1T15) , denoting the number of test cases.

In each test case, there are  3  integers  l,r,k(1lr1012,rl106,1k107) .
 

Output
For each test case, print a single line containing an integer, denoting the answer.
 

Sample Input
  
  
3
1 5 1
1 10 2
1 100 3
 

Sample Output
  
  
10
48
2302

题目大意:

求给定的函数值,其中  d(i)i 

解题思路:

设有  n=pa11pa22...pakk ,其中  n  的因子个数为: (a1+1)(a2+1)...(ak+1)  
首先预处理出  11012  里面所有的素数,然后枚举这些素数,在枚举  [L,R]  区间中这些素数的倍数,然后根据这些倍数进行素因子分解,其实就是统计  [L,R]  区间中有多少个枚举的素数,然后乘以  K , 在加 1 计算即可。在枚举  [L,R]  区间值的时候,我们需要先把  [L,R] 区间中的数用数组保存下来,然后通过数组进行素因子分解。 
吐槽:最开始想错了,以为需要用大数分解定理,后来发现自己智障了,根本不需要。 
代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MOD = 998244353;
const LL MAXN=1e6+5;
int prime[MAXN], cnt;
LL p[MAXN];
void isprime(){
    memset(prime, 0, sizeof(prime));
    cnt = 0;
    prime[1] = 1;
    for(LL i=2; i<MAXN; i++){
        if(!prime[i]){
            p[cnt++] = i;
            for(LL j=i*i; j<MAXN; j+=i) prime[j] = 1;
        }
    }
}
LL f[MAXN], num[MAXN];
int main()
{
    isprime();
    int T; scanf("%d", &T);
    while(T--){
        LL L, R, K;
        scanf("%lld%lld%lld", &L, &R, &K);
        LL ans = 0;
        if(L == 1) ans = 1, L++;
        int t = R-L;
        for(int i=0; i<=t; i++) f[i] = i+L, num[i] = 1;
        for(int i=0; i<cnt&&p[i]*p[i]<=R; i++){
            LL tmp = L;
            if(L % p[i]) tmp = (L/p[i]+1)*p[i];
            for(LL j=tmp; j<=R; j+=p[i]){
                LL cnt = 0;
                while(f[j-L]%p[i] == 0){
                    cnt++;
                    f[j-L] /= p[i];
                }
                num[j-L] = num[j-L]*(cnt*K+1)%MOD;
            }
        }
        for(int i=0; i<=t; i++){
            if(f[i] == 1) ans = (ans + num[i]) % MOD;
            else ans = (ans + num[i]*(K + 1)) % MOD;
        }
        printf("%lld\n", ans);
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值