基于MXNet的Cats vs. Dogs(猫狗大战)实现和详解

2019.12.8 更新完整代码

https://github.com/nickhuang1996/Dogs_vs_Cats_MXNet

具体的搭建和运行步骤可参看README.md


介绍

  • 这个存储库是为kaggle Dogs vs.Cats match准备的,但是您可以利用这个代码来学习如何使用mxnet
  • 对于网络,建立了包含VGGResNet等预训练模型的结构。
  • 对于采样器,有SequentialRandom两种类型。
  • 对于学习率调度器,我编写了4种类型来调整优化器的学习率。
  • 对于优化器,只有AdamSGD显示在我的存储库中。

目录

一、猫狗大战数据集

二、环境

三、实验结果


一、猫狗大战数据集

1.进入网址:https://www.kaggle.com/c/dogs-vs-cats/data,顺便注册账号。如果验证邮箱时出现“You did not enter the correct captcha response. Please try again“,提示没有输入正确的验证码。这个验证码是看不到的,因为这个验证码是用google提供的api,google被和谐了,所以加载不出来,FQ就能出来验证信息,然后完成注册~

2.点击My Account,找到API这一栏

                                                                      

3.点击Create New API Token,下载kaggle.json文件

确保这个文件在.kaggle文件夹底下

 例如博主的位置是这样的

4.下载json完成

5.下载数据集之前我们还需要同意相关Rules,点击“I Understand and Accept”

6.会跳转到手机验证界面,并进行进行人机验证,之后输入发送的验证码

                                                                  

7.验证完成

8.点击API后面的指令,会提示command copied to clipboard

9.下载方式:

(1)打开cmd或者下载,我们把刚才复制上的指令粘贴进去,开始下载

(2)迅雷下载比较快

                                                          

10.我们解压整个压缩包,里面的训练测试压缩包我们也解压,里面分别包含有猫和狗的图片,如下图

${project_dir}/datasets
    dogs-vs-cats
        train.zip
        test1.zip
        train           # Extracted from train.zip
        test1           # Extracted from test1.zip

 


二、环境

  • Python 3.6
  • mxnet-cu90(CUDA9.0)
  • tqdm 4.28.1
  • tensorboardX 1.5

三、实验结果

Network Accuracy(%)
VGG16_bn 97.92
ResNet50_v2 97.84

博主这里只训练了10个epochs。

发布了127 篇原创文章 · 获赞 979 · 访问量 142万+

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 技术黑板 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览