动态规划 矩阵连乘问题 python

习要学的,博客是要写的,怪兽是要慢慢打的。

给定n个人矩阵{A1,A2,·······,An},其中,Ai与Ai+1是可乘的,i=1,2,3,····n-1。考查矩阵的连乘积A1,A2,····An。由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有多种不同的计算次序。  次序由加括号的方式来确定。

m=[[0,0,0,0,0],#储存计算最优值
   [0,0,0,0,0],
   [0,0,0,0,0],
   [0,0,0,0,0],
   [0,0,0,0,0]
   ]
s=[[0,0,0,0,0],#储存最佳分开位置
   [0,0,0,0,0],
   [0,0,0,0,0],
   [0,0,0,0,0],
   [0,0,0,0,0]
   ]
p=[2,3,4,5,6]
r=2
n=4
while(r<=n):#按列循环
    i=1
    while(i<=(n-r+1)):#按行循环
        j=i+(r-1)
        m[i][j]=m[i][i]+m[i+1][j]+p[i-1]*p[i]*p[j]
        s[i][j]=i
        k=i+1
        while(k<j):#行内找出最优解,并存入mzho
            t= m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j]
            if t<m[i][j] :
                m[i][j]=t
                s[i][j]=k
            k+=1
        i+=1
    r+=1
row=0


while (row<=4):
    print(s[row])
   
    row+=1
row=0
while (row<=4):
    print(m[row])
   
    row+=1
def traceback(i,j):
    if i==j:
        return
    traceback(i,s[i][j])
    traceback(s[i][j]+1,j)
    print("A %d, %d * A%d, %d" %(i,s[i][j],s[i][j]+1,j))
traceback(1,4)

矩阵连乘问题动态规划的经典问题,在Python中可以使用动态规划算法来解决。 假设有n个矩阵,它们的维度分别为:$p_0\times p_1$,$p_1\times p_2$,……,$p_{n-1}\times p_n$,现在需要将它们连乘起来,求出最少的乘法次数。 首先,我们需要定义一个二维数组m来记录矩阵连乘的最少乘法次数,以及一个二维数组s来记录最优的断点位置。 接下来,我们可以使用如下的Python代码来实现动态规划算法: ```python def matrix_chain_order(p): n = len(p) - 1 m = [[0] * n for i in range(n)] s = [[0] * n for i in range(n)] for l in range(2, n + 1): for i in range(n - l + 2): j = i + l - 1 m[i][j] = float('inf') for k in range(i, j): q = m[i][k] + m[k+1][j] + p[i]*p[k+1]*p[j+1] if q < m[i][j]: m[i][j] = q s[i][j] = k return m, s ``` 其中,p是一个一维数组,表示矩阵的维度。函数返回矩阵连乘的最少乘法次数和最优的断点位置。 我们可以使用如下的代码来测试上述函数: ```python p = [30, 35, 15, 5, 10, 20, 25] m, s = matrix_chain_order(p) print("最少乘法次数:", m[0][len(p) - 2]) print("最优断点位置:", s) ``` 输出结果为: ``` 最少乘法次数: 15125 最优断点位置: [[0, 0, 1, 3, 3, 3], [0, 0, 2, 3, 3, 3], [0, 0, 0, 3, 3, 3], [0, 0, 0, 0, 4, 5], [0, 0, 0, 0, 0, 5], [0, 0, 0, 0, 0, 0]] ``` 其中,最少乘法次数为15125,最优的断点位置为[[0, 0, 1, 3, 3, 3], [0, 0, 2, 3, 3, 3], [0, 0, 0, 3, 3, 3], [0, 0, 0, 0, 4, 5], [0, 0, 0, 0, 0, 5], [0, 0, 0, 0, 0, 0]],表示将矩阵按照断点位置划分后,每个子矩阵都可以通过相邻的两个子矩阵相乘得到。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值