CVPR2020(Deep Clustering):论文解读《Online Deep Clustering for Unsupervised Representation Learning》

原文地址

https://arxiv.org/abs/2006.10645

论文阅读方法

三遍论文法

初识

背景:DC(Deep Clustering)在训练时交替进行“聚类”与“网络学习”,在无监督表示学习领域达到了很好的效果,但**其学习过程是不稳定的**。

这主要是由于DC的离线学习机制,在不同的epoch中样本标签发生改变,导致网络学习不稳定。
关于Deep Cluster这篇文章可参照我另一篇博客

为了解决这个问题,本文提出了ODC(Online Deep Clustering)的在线学习机制,同步执行“聚类”与“学习”而不是交替,这能保证分类器稳定更新的同时,簇心也稳步演变。通过使用两个存储器memory来实现,一个sample memory存储样本特征与标签,另一个centroids存储簇中心特征。ODC与DC的区别如下图所示:

相知

2. related work

① 无监督表示学习:包括重构的方法(GAN,VAE等),自监督学习的方法;② “聚类”与特征学习结合:Deep Clustering以及Deeper Clustering等;③ 提升自监督学习的机制:这也是本文的目的。

3. Methodology

两个Memory:① Sample Memory存储整个数据集的特征以及标签;② Centroids Memory存储每类簇心的特征。

在这里插入图片描述
整体流程

准备工作:网络随机初始化,两个Memory通过一次全局的聚类过程进行初始化,例如K-Means.

① 每个batch,网络前向传播得到样本特征;

② 根据Sample Memory中的伪标签进行反向传播,更新参数:

B为batch size,就是执行分类任务中的loss function

③ 同时对Sample Memory中特征与标签进行更新:

m∈(0,1],为momentum系数

执行最近邻,最近的簇为其新的标签

④ 对之前涉及到的Cluster,更新Centroids Memory中的特征,即平均属于该簇的所有特征作为新的簇心特征。

所谓涉及到的特征,就是在网络更新过程中有新点加入/旧点移除的簇,每k个iteration执行一次。(本文实验设置为k=10)

技巧

loss weighting:对于分类网络的loss function赋予权重,每个cluster的权重与当前所拥有的数量相关,这可以缓解类别不平衡影响。

每个类别所对应的权重w 正比于 对各类别数目N开根号后取倒数)

dealing with small clusters:设置一个阈值,如果存在某个cluster中的数量小于当前阈值,即删除这个类,并将其cluster中的点送到其他类别(最近的正常类)中;其次,对于那些数量很多的类,会将其拆分为两个子类

本文实验阈值设置为20

Dimensionality Reduction:DC执行PCA降维,而ODC额外增加一个非线性head layer,使用{fc-bn-relu-dropout-fc-relu}的方法进行降维处理,而在执行下游任务时去掉该层head layer

实现细节

具体参见原文,这里提出与DC的几个主要不同点:

① 数据增广增加随机旋转; ② 不使用sobel滤波来去除颜色,而是使用强色彩抖动(strong color jittering)来避免颜色影响; ③ 以0.2的概率随机将图片转为灰度。

4. Experiments

关于具体实验设置与结果,请参照原文。

回顾

本文发表于CVPR 2020,基于Deep Clustering的基础之上改进(在线学习的训练方式),效果提升地很明显。相比于之前主要关注于图像内语义信息的自监督学习,OCODC这两种深度聚类方法更着重地关注于图像间的信息,这也就说明它们与之前的自监督学习方法是天然互补的关系,ODC/DC可对先前经过自监督学习的网络进行微调并改善其性能

代码地址

https://github.com/open-mmlab/OpenSelfSup

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
CVPR 2019中发表了一篇题为“迁移学习:无监督领域自适应的对比适应网络(Contrastive Adaptation Network for Unsupervised Domain Adaptation)”的论文。这篇论文主要介绍了一种用于无监督领域自适应的对比适应网络。 迁移学习是指将从一个源领域学到的知识应用到一个目标领域的任务中。在无监督领域自适应中,源领域和目标领域的标签信息是不可用的,因此算法需要通过从源领域到目标领域的无监督样本对齐来实现知识迁移。 该论文提出的对比适应网络(Contrastive Adaptation Network,CAN)的目标是通过优化源领域上的特征表示,使其能够适应目标领域的特征分布。CAN的关键思想是通过对比损失来对源领域和目标领域的特征进行匹配。 具体地说,CAN首先通过一个共享的特征提取器来提取源领域和目标领域的特征表示。然后,通过对比损失函数来测量源领域和目标领域的特征之间的差异。对比损失函数的目标是使源领域和目标领域的特征在特定的度量空间中更加接近。最后,CAN通过最小化对比损失来优化特征提取器,以使源领域的特征能够适应目标领域。 该论文还对CAN进行了实验验证。实验结果表明,与其他无监督领域自适应方法相比,CAN在多个图像分类任务上取得了更好的性能,证明了其有效性和优越性。 综上所述,这篇CVPR 2019论文介绍了一种用于无监督领域自适应的对比适应网络,通过对源领域和目标领域的特征进行对比学习,使得源领域的特征能够适应目标领域。该方法在实验中展现了较好的性能,有望在无监督领域自适应任务中发挥重要作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值