【图像去噪】论文复现:双分支局部和全局特征提取自监督去噪盲点网络!LG-BPN的Pytorch源码复现,跑通源码,获得结果,可作为实验对比方法,结构图与源码实现相对应,轻松理解,注释详细!

请先看【专栏介绍文章】:【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)

完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!

本文亮点:

  • 跑通LG-BPN源码,包含数据集准备、训练、测试过程的图文展示,详细步骤,解决一些报错;
  • 获得去噪结果和PSNR/SSIM,与论文中基本一致,可用于实验对比方法;
  • LG-BPN网络结构梳理和拆解,结构示意图和代码实现对应,注释详细;


前言

论文题目:LG-BPN: Local and Global Blind-Patch Network for Self-Supervised Real-World D

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值