win11下安装Cuda和Cudnn(pytorch+GPU环境安装),保姆级教程!!!

1、win+r  输入cmd打开窗口输入nvidia-smi查看cuda版本,我的是11.6

2、来这里看些你的cuda和驱动版本(我的是521.78)匹配不么,不匹配的话去升级,我没遇到这个问题,good luck 

 3、下载cuda: CUDA Toolkit Archive | NVIDIA DeveloperPrevious releases of the CUDA Toolkit, GPU Computing SDK, documentation and developer drivers can be found using the links below. Please select the release you want from the list below, and be sure to check www.nvidia.com/drivers for more recent production drivers appropriate for your hardware configuration.https://developer.nvidia.com/cuda-toolkit-archive

我安装的是cuda11.5,当时安过11.6没玩明白后来遇到一个博主说win11要低一个版本然后就卸载重新安的这版==!

安装PyTorchPaddle深度学习环境以及PyCharm IDE,特别是针对初学者不需要手动配置CUDA/CuDNN的情况,可以按照以下步骤操作: **1. 安装Anaconda:** 首先,访问Anaconda官网下载适用于你的操作系统(Windows、Mac或Linux)的最新版Anaconda。安装过程中可以选择只安装基础环境,因为我们将使用`conda`环境管理工具。 **2. 创建并激活新环境:** 打开命令行或终端,创建一个新的Python环境专注于深度学习任务: ``` conda create -n pytorch_paddle python=3.7 # 如果你想用Python 3.7,替换为你需要的版本 conda activate pytorch_paddle ``` **3. 安装PyTorch:** 对于PyTorch,你可以通过`conda`轻松安装: ``` conda install pytorch torchvision cudatoolkit=10.2 -c pytorch # 根据你的显卡驱动选择适当版本 ``` 注意这里我们假设你已经有一个兼容的CUDA版本(如10.2)并且不需要手动安装cuDNN。 **4. 安装PaddlePaddle:** 安装PaddlePaddle: ``` pip install paddlepaddle cpu_ONLY # 使用CPU版本,如果你想使用GPU,改为`pip install paddlepaddle-gpu` ``` **5. 安装PyCharm:** 去PyCharm官网下载社区版免费版并安装安装完成后,打开PyCharm,在左侧导航栏选择"File" -> "Settings" -> "Project Interpreter",点击"+"添加新的Python解释器。选择你刚才创建的`pytorch_paddle`环境。 **6. 设置PyCharm Python插件:** 为了在PyCharm中切换到Paddle环境,你可以在PyCharm设置里配置Python插件(如Pylance)。在Settings > Languages & Frameworks > Python 中,选择你的`pytorch_paddle`环境作为默认解释器。 **相关问题--:** 1. 如何在PyCharm中查看当前使用的Python环境? 2. 如何在PyCharm中同时支持PyTorchPaddle项目? 3. 如果我想升或降环境,怎么做?
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值