图像的平移、旋转、缩放和剪切操作与仿射变换有关,因为这些基本的几何变换都可以通过仿射变换来表达和实现。仿射变换是一种保持点、直线和平行性的线性变换,它可以用一个矩阵乘法和一个向量加法来表示。这些操作的共同之处在于它们都涉及对图像坐标的线性变换和可能的位移,这正是仿射变换的核心。下面详细解释为什么这些操作与仿射变换有关:
1. 平移(Translation)
- 平移(Translation)
平移是对图像中的每个点进行一个固定的位移。在数学上,这可以表示为:
( x ′ y ′ ) = ( 1 0 0 1 ) ( x y ) + ( t x t y ) \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} tx \\ ty \end{pmatrix} (x′y′)=(1001)(xy)+(txty)
其中 ( t x , t y ) (tx, ty) (tx,ty) 是平移的距离。这显然是一个仿射变换,其中线性变换矩阵是单位矩阵,平移向量是 ( t x , t y ) (tx, ty) (tx,ty)。
- 旋转(Rotation)
旋转操作是绕某一固定点(通常是原点)旋转一个特定的角度。在数学上,旋转可以表示为:
( x ′ y ′ ) = ( cos θ − sin θ sin θ cos θ ) ( x y ) \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} (x′y′)=(cosθsinθ−sinθcosθ)(xy)
其中 θ \theta θ 是旋转角度。这是一个标准的仿射变换,其中线性变换矩阵是旋转矩阵,没有平移向量。
- 缩放(Scaling)
缩放是对图像的尺寸进行改变,可以分别在 x 方向和 y 方向上放大或缩小。在数学上,缩放可以表示为:
( x ′ y ′ ) = ( s x 0 0 s y ) ( x y ) \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} sx & 0 \\ 0 & sy \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} (x′y′)=(sx00sy)(xy)
其中 s x sx sx 和 s y sy sy 是 x 和 y 方向的缩放因子。这也是一个仿射变换,其中线性变换矩阵是一个对角矩阵,没有平移向量。
- 剪切(Shearing)
剪切是对图像的形状进行倾斜变换。在数学上,剪切可以表示为:
( x ′ y ′ ) = ( 1 s h x s h y 1 ) ( x y ) \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 1 & sh_x \\ sh_y & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} (x′y′)=(1shyshx1)(xy)
其中
s
h
x
sh_x
shx
和
s
h
y
sh_y
shy
是剪切因子。这也是一个仿射变换,其中线性变换矩阵包含了剪切因子,没有平移向量。
仿射变换的统一表达
所有这些操作都可以看作是特定类型的仿射变换,它们的共同点在于:
- 它们可以用一个 2x2 线性变换矩阵来表示,这个矩阵决定了变换的性质(平移、旋转、缩放、剪切)。
- 它们可以用一个 2x1 的平移向量来表示,这个向量决定了图像的位移。
这两个部分结合起来形成了一个完整的仿射变换。因此,平移、旋转、缩放和剪切都是仿射变换的特例,仿射变换提供了一种统一的数学框架来描述和实现这些基本的几何变换。
3899

被折叠的 条评论
为什么被折叠?



