参考文献:
文章刊物来源:临床麻醉学杂志
【摘要】目的 基于机器学习构建腹腔镜胆囊切除术(LC)患者发生全身麻醉诱导后低血压(PIH)的预测模型。方法 回顾性分析2019年5月至2023年9月行LC手术的患者资料,按照7∶3的比例分配训练集和验证集。使用Logistic回归、随机森林(RF)、支持向量机(SVM)方法构建PIH的预测模型,模型的区分准确度使用受试者工作特征(ROC)曲线下面积进行评估,模型的校准度采用校准曲线与霍斯默(H-L)检验进行评估,采用列线图对模型可视化。结果 共纳入患者260例,其中有82例(31.5%)发生PIH,训练集182例,验证集78例,其中训练集中有58例(31.9%)发生PIH,验证集中有24例(30.8%)发生PIH。年龄、BMI、使用血管紧张素转化酶抑制剂(ACEIs)/血管紧张素受体阻滞剂(ARBs)、基础HR和MAP、入室HR和MAP、HR变化值以及MAP变化值是预测PIH的影响因素。基于机器学习构建的Logistic回归模型的预测性能最佳,在验证集中曲线下面积(AUC)、准确度、召回率分别为0.93(95%CI 0.90~0.99)、0.81、0.81。结论 基于机器学习构建的Logistic回归模型具有良好的预测性能,筛选出的预测变量为年龄、BMI、使用ACEIs/ARBs、基础HR和MAP、入室HR和MAP、HR变化值以及MAP变化值,可快速准确评估LC患者PIH的发生风险。
【关键词】腹腔镜胆囊切除术;全身麻醉;诱导后低血压;机器学习;预测模型
随着微创手术的不断发展,腹腔镜胆囊切除术(laparoscopic cholecystectomy, LC)在胆道外科手术中应用广泛[1]。全身麻醉是LC的主要麻醉方式,但麻醉诱导药物可能会引发患者交感神经阻滞、血管扩张,导致低血压,即麻醉诱导后低血压(post-induction hypotension, PIH)[2]。PIH与急性肾损伤、心肌损伤等多种术后严重并发症的发生存在密切关联,是影响患者预后不良的重要危险因素[3-4]。由于PIH的发生与患者基础情况、手术操作、麻醉药物等多种因素有关[5],具体发生机制尚不清楚,临床上很难准确预测PIH,因此构建高准确率的预测模型对临床工作者术前制定PIH预防措施具有重要的指导意义。既往多采用线性回归、Logistic回归等方法分析影响因素,但均有一定的局限性,如对于多种变量或特征拟合效果不佳,导致模型准确性较低[6]。机器学习是人工智能的一个重要分支,通过训练算法从大量数据中提取特征和模式,从而不依赖于人工定义规则,能够更加准确地进行预测和分类,近年来在医学领域中广泛应用[7]。目前国内尚未有应用机器学习构建LC患者PIH的预测模型,本研究通过收集行LC手术患者的临床数据,基于机器学习构建PIH的预测模型,比较不同模型的参数性能,并为临床早期识别、预防PIH和精准干预提供依据。
资料与方法
一般资料 本研究是一项回顾性研究,本研究经医院伦理委员会批准[PJ-YX2023-063(F1)]。回顾性收集2019年5月至2023年9月期间行择期LC手术患者的临床资料,性别不限,ASA Ⅰ—Ⅲ级。排除标准:合并严重心脑血管疾病,不能耐受手术治疗,术前低血压,术前出现紧急生命体征变化,临床资料不全。
数据收集 通过电子病历系统收集患者资料,通过麻醉信息管理系统收集患者手术期间的相关资料。一般资料和临床,包括性别、年龄、BMI、ASA分级、合并症、使用药物、Charlson合并症指数(Charlson comorbidity index, CCI)、麻醉药物效应浓度、基础HR和MAP、入室时HR和MAP、HR变化值、MAP变化值、机械通气相关数据、PIH发生情况等,其中HR变化值=入室时HR-基础HR,MAP变化值=入室时MAP-基础MAP。基础HR、MAP为术前最后1次于病房测量的HR、MAP。PIH诊断标准参考文献[8],即给麻醉诱导药物后20 min内或手术开始切皮前,患者最低MAP的下降幅度大于麻醉诱导前最后1次MAP的30%。
对于存在缺失数据的数据集,为了保证数据集的完整性和准确性,本研究采用建模拟合的方式进行缺失值填充,通过模型学习前后样本各数据之间的相关性,将缺失的数据值进行预测并填补。
模型构建 将纳入的数据随机按照7∶3的比例进行抽样,70%进入训练集,30%进入验证集。根据患者是否发生PIH,将训练集分为两组:PIH组和非PIN组。训练集数据按照100次的5折交叉检验获取最优超参数,并带入所有训练集,得到最优训练模式,并带入相应验证组进行验证,以评估模型的拟合和泛化能力。验证集数据主要选择逻辑回归、随机森林、支持向量机等分别构建预测模型,以曲线下面积(area under the curve, AUC)评价预测模型区分度,AUC越大,提示预测模型的区分度越好,以AUC、敏感性、特异性、准确度、召回率评价模型性能。预测模型使用列线图可视化,并根据模型中预测变量对结果变量的贡献大小,得出每个变量的得分,将每个变量的得分相加从而得到总得分,总得分标尺对应垂直线交汇的概率值则为结果事件的相应概率。模型的校准度用校准曲线和霍斯默(Hosmer-Lemeshon, H-L)检验进行评估,校准曲线可反映不同危险分层患者中,预测PIH的风险与真实风险中的一致性。
统计分析 根据自变量事件数法,即纳入最终模型的每个预测因素至少需要10例阳性数(PIH例数)。预计本研究纳入8个因素,则至少需要PIH例数80例,根据PIH发生率为25%~57%[9-10],计算建模组所需样本量为156~355例。按照7∶3比例的要求,本研究需纳入260例,其中建模组182例,验证组78例。
采用R软件(4.3.1)进行统计分析。正态分布计量资料以均数±标准差表示,组间比较采用t检验;非正态分布计量资料以中位数和四分位数间距[M(IQR)]表示,组间比较采用秩和检验。计数资料以例(%)表示,组间比较采用χ2检验。P<0.05为差异有统计学意义。
结 果
本研究共纳入260例患者,按照7∶3的比例,训练集182例,验证集78例,其中训练集中PIH组58例(31.9%),非PIH组124例(68.1%)。两组患者年龄、BMI、使用ACEIs/ARBs、基础HR和MAP、入室HR和MAP、HR变化值以及MAP变化值差异有统计学意义(P<0.05)(表1)。
在验证集中,3种模型中Logistic回归的AUC、准确度、召回率分别为0.93(95%CI 0.90~0.99)、0.81、0.81;随机森林的AUC、准确度、召回率分别为0.82(95%CI 0.77~0.90)、0.69、0.68;支持向量机的AUC、准确度、召回率分别为0.80(95%CI 0.75~0.84)、0.65、0.64。3种模型中Logistic回归的各项评价指标为最佳,模型性能最优(图1—3,表2)。
为了提高Logistic模型的可解释性,引入列线图观察特征在模型中的具体表现,通过列线图进行量化评分提示年龄、BMI、使用ACEIs/ARBs、基础HR、基础MAP、入室HR、入室MAP、HR变化值以及MAP变化值是PIH的预测因素(图4)。
Logistic回归模型在训练集和验证集中的校准曲线提示Logistic回归模型在训练集和验证集中校准良好(图5)。
讨 论
PIH是腔镜手术中常见的并发症之一,本研究训练集中PIH发生率为31.9%,远高于Kendale等[11]报道的8.9%,可能是与PIH的定义标准不同有关。Lee等[12]研究表明,PIH与术后急性肾损伤、急性心肌梗死等并发症的发生密切关联,是影响患者预后的重要因素。由于术中低血压的具体发病机制尚未明确,诱因复杂多样,缺乏特异性防治方法,因此,识别高危人群对保障手术顺利进行和促进患者术后恢复具有重要意义。
近年来随着人工智能不断发展,越来越多的研究[13-14]指出,可通过构建预测PIH的模型以提高临床识别高危PIH的能力。王金灿等[15]研究表明,通过超声测得相应的血流和血管指标,可构建PIH预测模型,其AUC为0.782。但Lee等[16]研究表明,相较于超声测量指标构建的预测模型,利用机器学习构建的模型AUC和准确度更高,推测原因可能是PIH发生的原因复杂多样,不仅与容量反应性有关,还与交感神经抑制、压力反射调节等因素有关,仅采用超声测量指标反映容量状态无法准确预测PIH。而利用机器学习构建预测模型可通过训练大量的数据样本来学习模型,能够捕捉到更复杂的模式和关联,提高预测的准确性;同时可以自动调整模型的参数和权重,以适应不同的数据分布和特征之间的关系,可以同时处理多个特征,并找出不同特征之间的关联性,有助于更全面地评估患者PIH的发生风险[17]。
本研究基于机器学习方法构建并验证了3种PIH的预测模型,通过比较3种预测模型的性能,结果显示Logistic回归模型预测性能最优,与Hu等[18]研究结果相近。本研究有严格的纳排标准,减少模型负担,而Logistic回归模型对于特征之间的相关性和共线性具有较强的鲁棒性,能够较快地给出预测结果,有助于医护人员快速地预测PIH,因此,Logistic回归模型在预测LC患者PIH中具有良好的性能。
Reich等[19]研究表明,高龄是麻醉诱导时发生PIH的危险因素,高龄人群心脏收缩力降低,在相对循环中血容量不足,麻醉诱导时容易出现血流动力学减弱等情况,导致PIH。Juri等[20]研究表明,体重与PIH呈负相关,BMI是导致PIH发生的重要影响因素。术前高血压且长期服用ACEIs/ARBs可能会导致动脉血管扩张,尤其麻醉诱导时使用丙泊酚时,其PIH的发生风险进一步增加,可能与ACEIs/ARBs、丙泊酚药物的降压机制存在相似性有关[21]。Lohmeier等[22]研究表明,患者进入室前的应激反应比离开手术室的应激反应明显增高,应激反应是导致血压升高的重要机制。Wong等[23]研究表明,压力反射的长期激活可导致MAP持续性降低,因此通过计算MAP变化值,有助于观察患者的压力反射激活程度,而压力反射激活与交感神经抑制有关,分析MAP变化值有助于评估PIH的发生[24]。较大的HR变化提示患者可能处于精神紧张的状态,交感神经兴奋导致儿茶酚胺分泌过多,而全身麻醉药物抑制了交感神经兴奋,导致患者麻醉诱导时出现较大的血压变化[25]。此外,基于机器学习算法构建的Logistic辑回归模型中的临床特征变量容易获取,预测准确性较高,能够为医护人员快速准确评估LC患者PIH的发生风险提供客观的参考指标。
本研究为单中心回顾性研究,存在一定的局限性。首先,选择的样本仅限于行腹腔镜胆囊切除术的患者,这可能限制了模型的泛化能力。其次,PIH尚未有统一定义和标准,本研究中使用MAP下降幅度大于麻醉诱导前最后1次MAP的30%作为主要结局指标,可能会影响到模型的预测能力和实际临床应用中的准确性。最后,本研究未考虑到其他可能影响低血压发生的因素(如药物使用、共病状态等),也可能影响到模型的效果和应用广度。
综上所述,基于机器学习构建的Logistic回归模型具有良好的PIH预测性能,筛选出的预测变量为年龄、BMI、使用ACEIs/ARBs、基础HR和MAP、入室HR和MAP、HR变化值以及MAP变化值,有助于医护人员快速准确评估PIH的发生风险。