ElasticSearch 进阶
一、 ElasticSearch常用编程操作
1.1 索引相关操作
1.1.1 创建索引
@Test
//创建索引
public void test1() throws Exception {
// 创建Client连接对象
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new
InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
//创建名称为blog2的索引
client.admin().indices().prepareCreate("blog2").get();
//释放资源
client.close();
}


1.1.2 删除索引
@Test
//删除索引
public void test2() throws Exception{
// 创建Client连接对象
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new
InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
//删除名称为blog2的索引
client.admin().indices().prepareDelete("blog2").get();
//释放资源
client.close();
}

1.2 映射相关操作
1.2.1 创建映射
@Test
//创建映射
public void test3() throws Exception{
// 创建Client连接对象
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new
InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
//创建索引
client.admin().indices().prepareCreate("blog2").get();
// 添加映射
/**
* 格式:
* "mappings" : {
"article" : {
"properties" : {
"id" : { "type" : "string" },
"content" : { "type" : "string" },
"author" : { "type" : "string" }
}
}
}
*/
XContentBuilder builder = XContentFactory.jsonBuilder()
.startObject()
.startObject("article")
.startObject("properties")
.startObject("id")
.field("type", "integer").field("store", "yes")
.endObject()
.startObject("title")
.field("type", "string").field("store", "yes").field("analyzer", "ik_smart")
.endObject()
.startObject("content")
.field("type", "string").field("store", "yes").field("analyzer", "ik_smart")
.endObject()
.endObject()
.endObject()
.endObject();
// 创建映射
PutMappingRequest mapping = Requests.putMappingRequest("blog2")
.type("article").source(builder);
client.admin().indices().putMapping(mapping).get();
//释放资源
client.close();
}


1.3 文档相关操作
1.3.1 建立文档(通过XContentBuilder)
@Test
//创建文档(通过XContentBuilder)
public void test4() throws Exception{
// 创建Client连接对象
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new
InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
//创建文档信息
XContentBuilder builder = XContentFactory.jsonBuilder()
.startObject()
.field("id", 1)
.field("title", "ElasticSearch是一个基于Lucene的搜索服务器")
.field("content",
"它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能 够达到实时搜索,稳定,可靠,快速,安装使用方便。")
.endObject();
// 建立文档对象
/**
* 参数一blog1:表示索引对象
* 参数二article:类型
* 参数三1:建立id
*/
client.prepareIndex("blog2", "article", "1").setSource(builder).get();
//释放资源
client.close();
}

1.3.2 建立文档(使用Jackson转换实体)
1)创建Article实体
public class Article {
private Integer id;
private String title;
private String content;
getter/setter...
}
2)添加jackson坐标
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.8.1</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.8.1</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>2.8.1</version>
</dependency>
3)代码实现
@Test
//创建文档(通过实体转json)
public void test5() throws Exception{
// 创建Client连接对象
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new
InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
// 描述json 数据
//{id:xxx, title:xxx, content:xxx}
Article article = new Article();
article.setId(2);
article.setTitle("搜索工作其实很快乐");
article.setContent("我们希望我们的搜索解决方案要快,我们希望有一个零配置和一个完全免费的搜索模式,我们希望能够简单地使用JSON通过HTTP的索引数据,我们希望我们的搜索服务器始终可用,我们希望能够一台开 始并扩展到数百,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案。Elasticsearch旨在解 决所有这些问题和更多的问题。");
ObjectMapper objectMapper = new ObjectMapper();
// 建立文档
client.prepareIndex("blog2", "article", article.getId().toString())
.setSource(objectMapper.writeValueAsString(article)).get();
//释放资源
client.close();
}

1.3.3 修改文档
1.3.3.1 使用prepareUpdate、prepareIndex修改文档
@Test
//修改文档
public void test6() throws Exception{
// 创建Client连接对象
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new
InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
Article article = new Article();
article.setId(2);
article.setTitle("搜索工作我很喜欢");
article.setContent("我们希望我们的搜索解决方案要快,我们希望有一个零配置和一个完全免费的搜索模 式,我们希望能够简单地使用JSON通过HTTP的索引数据,我们希望我们的搜索服务器始终可用,我们希望能够一台开 始并扩展到数百,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案。Elasticsearch旨在解 决所有这些问题和更多的问题。");
ObjectMapper objectMapper = new ObjectMapper();
client.prepareUpdate("blog2", "article", article.getId().toString())
.setDoc(objectMapper.writeValueAsString(article)).get();
//释放资源
client.close();
}

1.3.3.2 直接使用update修改文档
@Test
//修改文档
public void test7() throws Exception{
// 创建Client连接对象
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new
InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
Article article = new Article();
article.setId(2);
article.setTitle("搜索工作我特别特别喜欢");
article.setContent("我们希望我们的搜索解决方案要快,我们希望有一个零配置和一个完全免费的搜索模 式,我们希望能够简单地使用JSON通过HTTP的索引数据,我们希望我们的搜索服务器始终可用,我们希望能够一台开 始并扩展到数百,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案。Elasticsearch旨在解 决所有这些问题和更多的问题。");
ObjectMapper objectMapper = new ObjectMapper();
client.update(new UpdateRequest("blog2", "article", article.getId().toString())
.doc(objectMapper.writeValueAsString(article))).get();
//释放资源
client.close();
}

1.3.4 删除文档
1.3.4.1 通过prepareDelete 删除文档
@Test
//修改文档
public void test8() throws Exception{
// 创建Client连接对象
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new
InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
//删除blog2下的类型是article中的id为2的数据
client.prepareDelete("blog2", "article", "2").get();
//释放资源
client.close();
}

1.3.4.2 直接使用delete 删除文档
@Test
//修改文档
public void test9() throws Exception{
// 创建Client连接对象
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new
InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
//删除blog2下的类型是article中的id为1的数据
client.delete(new DeleteRequest("blog2", "article", "1")).get();
//释放资源
client.close();
}

1.4 查询文档分页操作
1.4.1 批量插入数据
@Test
//批量插入100条数据
public void test10() throws Exception{
// 创建Client连接对象
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new
InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
ObjectMapper objectMapper = new ObjectMapper();
for (int i = 1; i <= 100; i++) {
// 描述json 数据
Article article = new Article();
article.setId(i);
article.setTitle(i + "搜索工作其实很快乐");
article.setContent(i
+ "我们希望我们的搜索解决方案要快,我们希望有一个零配置和一个完全免费的 搜索模式,我们希望能够简单地使用JSON通过HTTP的索引数据,我们希望我们的搜索服务器始终可用,我们希望能够 一台开始并扩展到数百,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案。Elasticsearch 旨在解决所有这些问题和更多的问题。");
// 建立文档
client.prepareIndex("blog2", "article", article.getId().toString())
.setSource(objectMapper.writeValueAsString(article)).get();
}
//释放资源
client.close();
}

1.4.3 分页查询和排序
@Test
//分页查询
public void test11() throws Exception{
// 创建Client连接对象
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new
InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
// 搜索数据
SearchRequestBuilder searchRequestBuilder =
client.prepareSearch("blog2").setTypes("article")
.setQuery(QueryBuilders.matchAllQuery());//默认每页10条记录
// 查询第2页数据,每页20条
//setFrom():从第几条开始检索,默认是0。
//setSize():每页最多显示的记录数。
searchRequestBuilder.setFrom(20).setSize(20);
// 排序
searchRequestBuilder.addSort("id", SortOrder.DESC);
SearchResponse searchResponse = searchRequestBuilder.get();
SearchHits hits = searchResponse.getHits(); // 获取命中次数,查询结果有多少对象
System.out.println("查询结果有:" + hits.getTotalHits() + "条");
Iterator<SearchHit> iterator = hits.iterator();
while (iterator.hasNext()) {
SearchHit searchHit = iterator.next(); // 每个查询对象
System.out.println(searchHit.getSourceAsString()); // 获取字符串格式打印
System.out.println("id:" + searchHit.getSource().get("id"));
System.out.println("title:" + searchHit.getSource().get("title"));
System.out.println("content:" + searchHit.getSource().get("content"));
System.out.println("-----------------------------------------");
}
//释放资源
client.close();
}

1.5 查询结果高亮操作
1.5.1 什么是高亮显示
在进行关键字搜索时,搜索出的内容中的关键字会显示不同的颜色,称之为高亮
京东商城搜索"笔记本"

1.5.2 高亮显示的html分析
通过开发者工具查看高亮数据的html代码实现:

ElasticSearch可以对查询出的内容中关键字部分进行标签和样式的设置,但是你需要告诉ElasticSearch使用什么标
签对高亮关键字进行包裹
1.5.3 高亮显示代码实现
@Test
//高亮查询
public void test12() throws Exception{
// 创建Client连接对象
TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
.addTransportAddress(new
InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
// 搜索数据
SearchRequestBuilder searchRequestBuilder = client
.prepareSearch("blog2").setTypes("article")
.setQuery(QueryBuilders.termQuery("title", "搜索"));
//设置高亮数据
HighlightBuilder hiBuilder=new HighlightBuilder();
hiBuilder.preTags("<font style='color:red'>");
hiBuilder.postTags("</font>");
hiBuilder.field("title");
searchRequestBuilder.highlighter(hiBuilder);
//获得查询结果数据
SearchResponse searchResponse = searchRequestBuilder.get();
//获取查询结果集
SearchHits searchHits = searchResponse.getHits();
System.out.println("共搜到:"+searchHits.getTotalHits()+"条结果!");
//遍历结果
for(SearchHit hit:searchHits){
System.out.println("String方式打印文档搜索内容:");
System.out.println(hit.getSourceAsString());
System.out.println("Map方式打印高亮内容");
System.out.println(hit.getHighlightFields());
System.out.println("遍历高亮集合,打印高亮片段:");
Text[] text = hit.getHighlightFields().get("title").getFragments();
for (Text str : text) {
System.out.println(str);
}
}
//释放资源
client.close();
}

二、 Spring Data ElasticSearch 使用
2.1 Spring Data ElasticSearch简介
2.1.1 什么是Spring Data
Spring Data是一个用于简化数据库访问,并支持云服务的开源框架。其主要目标是使得对数据的访问变得方便快
捷,并支持map-reduce框架和云计算数据服务。 Spring Data可以极大的简化JPA的写法,可以在几乎不用写实现
的情况下,实现对数据的访问和操作。除了CRUD外,还包括如分页、排序等一些常用的功能。
Spring Data的官网:http://projects.spring.io/spring-data/
Spring Data常用的功能模块如下:


2.1.2 什么是Spring Data ElasticSearch
Spring Data ElasticSearch 基于 spring data API 简化 elasticSearch操作,将原始操作elasticSearch的客户端API 进
行封装 。Spring Data为Elasticsearch项目提供集成搜索引擎。Spring Data Elasticsearch POJO的关键功能区域为
中心的模型与Elastichsearch交互文档和轻松地编写一个存储库数据访问层。
官方网站:http://projects.spring.io/spring-data-elasticsearch/
2.2 Spring Data ElasticSearch入门
1)导入Spring Data ElasticSearch坐标
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<groupId>com.wsw</groupId>
<artifactId>elasticsearch_demo3</artifactId>
<version>1.0-SNAPSHOT</version>
<dependencies>
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>5.6.8</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>transport</artifactId>
<version>5.6.8</version>
</dependency>
<dependency>
<groupId>org.apache.logging.log4j</groupId>
<artifactId>log4j-to-slf4j</artifactId>
<version>2.9.1</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-api</artifactId>
<version>1.7.24</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-simple</artifactId>
<version>1.7.21</version>
</dependency>
<dependency>
<groupId>log4j</groupId>
<artifactId>log4j</artifactId>
<version>1.2.12</version>
</dependency>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-core</artifactId>
<version>2.8.1</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.8.1</version>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-annotations</artifactId>
<version>2.8.1</version>
</dependency>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-elasticsearch</artifactId>
<version>3.0.5.RELEASE</version>
</dependency>
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-test</artifactId>
<version>5.0.4.RELEASE</version>
</dependency>
</dependencies>
</project>
2)创建applicationContext.xml配置文件,引入elasticsearch命名空间
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:elasticsearch="http://www.springframework.org/schema/data/elasticsearch"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/data/elasticsearch
http://www.springframework.org/schema/data/elasticsearch/spring-elasticsearch-1.0.xsd">
</beans>
3)编写实体Article
public class Article {
private Integer id;
private String title;
private String content;
public Integer getId() {
return id;
}
public void setId(Integer id) {
this.id = id;
}
public String getTitle() {
return title;
}
public void setTitle(String title) {
this.title = title;
}
public String getContent() {
return content;
}
public void setContent(String content) {
this.content = content;
}
@Override
public String toString() {
return "Article [id=" + id + ", title=" + title + ", content=" + content + "]";
}
}
4)编写Dao
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
public interface ArticleRepository extends ElasticsearchRepository<Article, Integer> {
}
5)编写Service
public interface ArticleService {
public void save(Article article);
}
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
@Service
public class ArticleServiceImpl implements ArticleService {
@Autowired
private ArticleRepository articleRepository;
public void save(Article article) {
articleRepository.save(article);
}
}
6) 配置applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/context"
xmlns:elasticsearch="http://www.springframework.org/schema/data/elasticsearch"
xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/data/elasticsearch
http://www.springframework.org/schema/data/elasticsearch/spring-elasticsearch-
1.0.xsd
">
<!-- 扫描Dao包,自动创建实例 -->
<elasticsearch:repositories base-package="com.wsw.dao"/>
<!-- 扫描Service包,创建Service的实体 -->
<context:component-scan base-package="com.wsw.service"/>
<!-- 配置elasticSearch的连接 -->
<elasticsearch:transport-client id="client" cluster-nodes="localhost:9300" />
<!-- spring data elasticSearcheDao 必须继承 ElasticsearchTemplate -->
<bean id="elasticsearchTemplate"
class="org.springframework.data.elasticsearch.core.ElasticsearchTemplate">
<constructor-arg name="client" ref="client"></constructor-arg>
</bean>
</beans>
7)配置实体
基于spring data elasticsearch注解配置索引、映射和实体的关系
import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.Field;
import org.springframework.data.elasticsearch.annotations.FieldType;
//@Document 文档对象 (索引信息、文档类型 )
@Document(indexName = "blog3", type = "article")
public class Article {
//@Id 文档主键 唯一标识
@Id
//@Field 每个文档的字段配置(类型、是否分词、是否存储、分词器 )
@Field(store = true, index = false, type = FieldType.Integer)
private Integer id;
@Field(index = true, analyzer = "ik_smart", store = true, searchAnalyzer = "ik_smart", type =
FieldType.text)
private String title;
@Field(index = true, analyzer = "ik_smart", store = true, searchAnalyzer = "ik_smart", type =
FieldType.text)
private String content;
public Integer getId() {
return id;
}
public void setId(Integer id) {
this.id = id;
}
public String getTitle() {
return title;
}
public void setTitle(String title) {
this.title = title;
}
public String getContent() {
return content;
}
public void setContent(String content) {
this.content = content;
}
@Override
public String toString() {
return "Article [id=" + id + ", title=" + title + ", content=" + content + "]";
}
}
其中,注解解释如下:
@Document(indexName="blob3",type="article"):
indexName:索引的名称(必填项)
type:索引的类型
@Id:主键的唯一标识
@Field(index=true,analyzer="ik_smart",store=true,searchAnalyzer="ik_smart",type = FieldType.text)
index:是否设置分词
analyzer:存储时使用的分词器
searchAnalyze:搜索时使用的分词器
store:是否存储
type: 数据类型
8)创建测试类SpringDataESTest
import org.elasticsearch.client.transport.TransportClient;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations="classpath:applicationContext.xml")
public class SpringDataESTest {
@Autowired
private ArticleService articleService;
@Autowired
private TransportClient client;
@Autowired
private ElasticsearchTemplate elasticsearchTemplate;
/**创建索引和映射*/
@Test
public void createIndex(){
elasticsearchTemplate.createIndex(Article.class);
elasticsearchTemplate.putMapping(Article.class);
}
/**测试保存文档*/
@Test
public void saveArticle(){
Article article = new Article();
article.setId(100);
article.setTitle("测试SpringData ElasticSearch");
article.setContent("Spring Data ElasticSearch 基于 spring data API 简化 elasticSearch操作,将原始操作elasticSearch的客户端API 进行封装 \n" +
" Spring Data为Elasticsearch Elasticsearch项目提供集成搜索引擎");
articleService.save(article);
}
}
2.3 Spring Data ElasticSearch的常用操作
2.3.1 增删改查方法测试
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
public interface ArticleService {
//保存
public void save(Article article);
//删除
public void delete(Article article);
//查询全部
public Iterable<Article> findAll();
//分页查询
public Page<Article> findAll(Pageable pageable);
}
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
import org.springframework.stereotype.Service;
@Service
public class ArticleServiceImpl implements ArticleService {
@Autowired
private ArticleRepository articleRepository;
public void save(Article article) {
articleRepository.save(article);
}
public void delete(Article article) {
articleRepository.delete(article);
}
public Iterable<Article> findAll() {
Iterable<Article> iter = articleRepository.findAll();
return iter;
}
public Page<Article> findAll(Pageable pageable) {
return articleRepository.findAll(pageable);
}
}
import org.elasticsearch.client.transport.TransportClient;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = "classpath:applicationContext.xml")
public class SpringDataESTest {
@Autowired
private ArticleService articleService;
@Autowired
private TransportClient client;
@Autowired
private ElasticsearchTemplate elasticsearchTemplate;
/**
* 创建索引和映射
*/
@Test
public void createIndex() {
elasticsearchTemplate.createIndex(Article.class);
elasticsearchTemplate.putMapping(Article.class);
}
/**
* 测试保存文档
*/
@Test
public void saveArticle() {
Article article = new Article();
article.setId(100);
article.setTitle("测试SpringData ElasticSearch");
article.setContent("Spring Data ElasticSearch 基于 spring data API 简化 elasticSearch操作,将原始操作elasticSearch的客户端API 进行封装 \n" +
" Spring Data为Elasticsearch Elasticsearch项目提供集成搜索引擎");
articleService.save(article);
}
/**
* 测试保存
*/
@Test
public void save() {
Article article = new Article();
article.setId(1001);
article.setTitle("elasticSearch 3.0版本发布");
article.setContent("ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户 能力的全文搜索引擎,基于RESTful web接口");
articleService.save(article);
}
/**
* 测试更新
*/
@Test
public void update() {
Article article = new Article();
article.setId(1001);
article.setTitle("elasticSearch 3.0版本发布...更新");
article.setContent("ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户 能力的全文搜索引擎,基于RESTful web接口");
articleService.save(article);
}
/**
* 测试删除
*/
@Test
public void delete() {
Article article = new Article();
article.setId(1001);
articleService.delete(article);
}
/**
* 批量插入
*/
@Test
public void save100() {
for (int i = 1; i <= 100; i++) {
Article article = new Article();
article.setId(i);
article.setTitle(i + "elasticSearch 3.0版本发布..,更新");
article.setContent(i + "ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布 式多用户能力的全文搜索引擎,基于RESTful web接口");
articleService.save(article);
}
}
/**
* 排序查询
*/
@Test
public void findAllSort() {
Iterable<Article> list = articleService.findAll();
for (Article article : list) {
System.out.println(article);
}
}
/**
* 分页查询
*/
@Test
public void findAllPage() {
Pageable pageable = new PageRequest(0, 10);
Page<Article> page = articleService.findAll(pageable);
for (Article article : page.getContent()) {
System.out.println(article);
}
}
}
2.3.2 常用查询命名规则
2.3.3 查询方法测试
需求:根据指定标题查询数据
1)dao层实现
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
import java.util.List;
public interface ArticleRepository extends ElasticsearchRepository<Article, Integer> {
//根据标题查询
List<Article> findByTitle(String condition);
//根据标题查询(含分页)
Page<Article> findByTitle(String condition, Pageable pageable);
}
2)service层实现
public interface ArticleService {
//根据标题查询
List<Article> findByTitle(String condition);
//根据标题查询(含分页)
Page<Article> findByTitle(String condition, Pageable pageable);
}
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
import org.springframework.stereotype.Service;
import java.util.List;
@Service
public class ArticleServiceImpl implements ArticleService {
@Autowired
private ArticleRepository articleRepository;
public List<Article> findByTitle(String condition) {
return articleRepository.findByTitle(condition);
}
public Page<Article> findByTitle(String condition, Pageable pageable) {
return articleRepository.findByTitle(condition,pageable);
}
}
3)测试代码
import org.elasticsearch.client.transport.TransportClient;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import java.util.List;
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations="classpath:applicationContext.xml")
public class SpringDataESTest {
@Autowired
private ArticleService articleService;
@Autowired
private TransportClient client;
@Autowired
private ElasticsearchTemplate elasticsearchTemplate;
/**条件查询*/
@Test
public void findByTitle(){
String condition = "版本";
List<Article> articleList = articleService.findByTitle(condition);
for(Article article:articleList){
System.out.println(article);
}
}
/**条件分页查询*/
@Test
public void findByTitlePage(){
String condition = "版本";
Pageable pageable = new PageRequest(0, 5);
Page<Article> page = articleService.findByTitle(condition,pageable);
for(Article article:page.getContent()){
System.out.println(article);
}
}
}
365

被折叠的 条评论
为什么被折叠?



