ElasticSearch(二)进阶

ElasticSearch 进阶



一、 ElasticSearch常用编程操作



1.1 索引相关操作



1.1.1 创建索引

    @Test
    //创建索引
    public void test1() throws Exception {
        // 创建Client连接对象
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new
                        InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        //创建名称为blog2的索引
        client.admin().indices().prepareCreate("blog2").get();
        //释放资源
        client.close();
    }


1.1.2 删除索引

    @Test
    //删除索引
    public void test2() throws Exception{
        // 创建Client连接对象
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new
                        InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        //删除名称为blog2的索引
        client.admin().indices().prepareDelete("blog2").get();
        //释放资源
        client.close();
    }

 

1.2 映射相关操作



1.2.1 创建映射

@Test
    //创建映射
    public void test3() throws Exception{
        // 创建Client连接对象
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new
                        InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        //创建索引
        client.admin().indices().prepareCreate("blog2").get();
        // 添加映射
        /**
         * 格式:
         * "mappings" : {
            "article" : {
                "properties" : {
                      "id" : { "type" : "string" },
                      "content" : { "type" : "string" },
                      "author" : { "type" : "string" }
                }
            }
         }
         */
        XContentBuilder builder = XContentFactory.jsonBuilder()
                .startObject()
                .startObject("article")
                .startObject("properties")
                .startObject("id")
                .field("type", "integer").field("store", "yes")
                .endObject()
                .startObject("title")
                .field("type", "string").field("store", "yes").field("analyzer", "ik_smart")
                .endObject()
                .startObject("content")
                .field("type", "string").field("store", "yes").field("analyzer", "ik_smart")
                .endObject()
                .endObject()
                .endObject()
                .endObject();
        // 创建映射
        PutMappingRequest mapping = Requests.putMappingRequest("blog2")
                .type("article").source(builder);
        client.admin().indices().putMapping(mapping).get();
        //释放资源
        client.close();
    }

 

1.3 文档相关操作



1.3.1 建立文档(通过XContentBuilder)

@Test
    //创建文档(通过XContentBuilder)
    public void test4() throws Exception{
        // 创建Client连接对象
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new
                        InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        //创建文档信息
        XContentBuilder builder = XContentFactory.jsonBuilder()
                .startObject()
                .field("id", 1)
                .field("title", "ElasticSearch是一个基于Lucene的搜索服务器")
                .field("content",
                        "它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口。Elasticsearch是用Java开发的,并作为Apache许可条款下的开放源码发布,是当前流行的企业级搜索引擎。设计用于云计算中,能 够达到实时搜索,稳定,可靠,快速,安装使用方便。")
                                .endObject();
        // 建立文档对象
        /**
         * 参数一blog1:表示索引对象
         * 参数二article:类型
         * 参数三1:建立id
         */
        client.prepareIndex("blog2", "article", "1").setSource(builder).get();
        //释放资源
        client.close();
    }


1.3.2 建立文档(使用Jackson转换实体)


1)创建Article实体

    public class Article {
        private Integer id;
        private String title;
        private String content;
        getter/setter...
    }


2)添加jackson坐标

    <dependency>
        <groupId>com.fasterxml.jackson.core</groupId>
        <artifactId>jackson-core</artifactId>
        <version>2.8.1</version>
    </dependency>
    <dependency>
        <groupId>com.fasterxml.jackson.core</groupId>
        <artifactId>jackson-databind</artifactId>
        <version>2.8.1</version>
    </dependency>
    <dependency>
        <groupId>com.fasterxml.jackson.core</groupId>
        <artifactId>jackson-annotations</artifactId>
        <version>2.8.1</version>
    </dependency>


3)代码实现

    @Test
    //创建文档(通过实体转json)
    public void test5() throws Exception{
        // 创建Client连接对象
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new
                        InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        // 描述json 数据
        //{id:xxx, title:xxx, content:xxx}
        Article article = new Article();
        article.setId(2);
        article.setTitle("搜索工作其实很快乐");
        article.setContent("我们希望我们的搜索解决方案要快,我们希望有一个零配置和一个完全免费的搜索模式,我们希望能够简单地使用JSON通过HTTP的索引数据,我们希望我们的搜索服务器始终可用,我们希望能够一台开 始并扩展到数百,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案。Elasticsearch旨在解 决所有这些问题和更多的问题。");
        ObjectMapper objectMapper = new ObjectMapper();
        // 建立文档
        client.prepareIndex("blog2", "article", article.getId().toString())
                .setSource(objectMapper.writeValueAsString(article)).get();
        //释放资源
        client.close();
    }



1.3.3 修改文档
1.3.3.1 使用prepareUpdate、prepareIndex修改文档

@Test
    //修改文档
    public void test6() throws Exception{
        // 创建Client连接对象
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new
                        InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        Article article = new Article();
        article.setId(2);
        article.setTitle("搜索工作我很喜欢");
        article.setContent("我们希望我们的搜索解决方案要快,我们希望有一个零配置和一个完全免费的搜索模 式,我们希望能够简单地使用JSON通过HTTP的索引数据,我们希望我们的搜索服务器始终可用,我们希望能够一台开 始并扩展到数百,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案。Elasticsearch旨在解 决所有这些问题和更多的问题。");
        ObjectMapper objectMapper = new ObjectMapper();
        client.prepareUpdate("blog2", "article", article.getId().toString())
                .setDoc(objectMapper.writeValueAsString(article)).get();
        //释放资源
        client.close();
    }

1.3.3.2 直接使用update修改文档
 

@Test
    //修改文档
    public void test7() throws Exception{
        // 创建Client连接对象
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new
                        InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        Article article = new Article();
        article.setId(2);
        article.setTitle("搜索工作我特别特别喜欢");
        article.setContent("我们希望我们的搜索解决方案要快,我们希望有一个零配置和一个完全免费的搜索模 式,我们希望能够简单地使用JSON通过HTTP的索引数据,我们希望我们的搜索服务器始终可用,我们希望能够一台开 始并扩展到数百,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案。Elasticsearch旨在解 决所有这些问题和更多的问题。");
        ObjectMapper objectMapper = new ObjectMapper();
        client.update(new UpdateRequest("blog2", "article", article.getId().toString())
                .doc(objectMapper.writeValueAsString(article))).get();
        //释放资源
        client.close();
    }

 

1.3.4 删除文档
1.3.4.1 通过prepareDelete 删除文档

    @Test
    //修改文档
    public void test8() throws Exception{
        // 创建Client连接对象
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new
                        InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        //删除blog2下的类型是article中的id为2的数据
        client.prepareDelete("blog2", "article", "2").get();
        //释放资源
        client.close();
    }

 

1.3.4.2 直接使用delete 删除文档

    @Test
    //修改文档
    public void test9() throws Exception{
        // 创建Client连接对象
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new
                        InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        //删除blog2下的类型是article中的id为1的数据
        client.delete(new DeleteRequest("blog2", "article", "1")).get();
        //释放资源
        client.close();
    }

 

1.4 查询文档分页操作



1.4.1 批量插入数据

@Test
    //批量插入100条数据
    public void test10() throws Exception{
        // 创建Client连接对象
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new
                        InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        ObjectMapper objectMapper = new ObjectMapper();
        for (int i = 1; i <= 100; i++) {
            // 描述json 数据
            Article article = new Article();
            article.setId(i);
            article.setTitle(i + "搜索工作其实很快乐");
            article.setContent(i
                            + "我们希望我们的搜索解决方案要快,我们希望有一个零配置和一个完全免费的 搜索模式,我们希望能够简单地使用JSON通过HTTP的索引数据,我们希望我们的搜索服务器始终可用,我们希望能够 一台开始并扩展到数百,我们要实时搜索,我们要简单的多租户,我们希望建立一个云的解决方案。Elasticsearch 旨在解决所有这些问题和更多的问题。");
            // 建立文档
            client.prepareIndex("blog2", "article", article.getId().toString())
                    .setSource(objectMapper.writeValueAsString(article)).get();
        }
        //释放资源
        client.close();
    }

1.4.3 分页查询和排序

 @Test
    //分页查询
    public void test11() throws Exception{
        // 创建Client连接对象
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new
                        InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        // 搜索数据
        SearchRequestBuilder searchRequestBuilder =
                client.prepareSearch("blog2").setTypes("article")
                        .setQuery(QueryBuilders.matchAllQuery());//默认每页10条记录
        // 查询第2页数据,每页20条
        //setFrom():从第几条开始检索,默认是0。
        //setSize():每页最多显示的记录数。
        searchRequestBuilder.setFrom(20).setSize(20);
        // 排序
        searchRequestBuilder.addSort("id", SortOrder.DESC);
        SearchResponse searchResponse = searchRequestBuilder.get();
        SearchHits hits = searchResponse.getHits(); // 获取命中次数,查询结果有多少对象
        System.out.println("查询结果有:" + hits.getTotalHits() + "条");
        Iterator<SearchHit> iterator = hits.iterator();
        while (iterator.hasNext()) {
            SearchHit searchHit = iterator.next(); // 每个查询对象
            System.out.println(searchHit.getSourceAsString()); // 获取字符串格式打印
            System.out.println("id:" + searchHit.getSource().get("id"));
            System.out.println("title:" + searchHit.getSource().get("title"));
            System.out.println("content:" + searchHit.getSource().get("content"));
            System.out.println("-----------------------------------------");
        }
        //释放资源
        client.close();
    }

1.5 查询结果高亮操作



1.5.1 什么是高亮显示


在进行关键字搜索时,搜索出的内容中的关键字会显示不同的颜色,称之为高亮
 

京东商城搜索"笔记本"

1.5.2 高亮显示的html分析


通过开发者工具查看高亮数据的html代码实现:

ElasticSearch可以对查询出的内容中关键字部分进行标签和样式的设置,但是你需要告诉ElasticSearch使用什么标
签对高亮关键字进行包裹


1.5.3 高亮显示代码实现

@Test
    //高亮查询
    public void test12() throws Exception{
        // 创建Client连接对象
        TransportClient client = new PreBuiltTransportClient(Settings.EMPTY)
                .addTransportAddress(new
                        InetSocketTransportAddress(InetAddress.getByName("127.0.0.1"), 9300));
        // 搜索数据
        SearchRequestBuilder searchRequestBuilder = client
                .prepareSearch("blog2").setTypes("article")
                .setQuery(QueryBuilders.termQuery("title", "搜索"));
        //设置高亮数据
        HighlightBuilder hiBuilder=new HighlightBuilder();
        hiBuilder.preTags("<font style='color:red'>");
        hiBuilder.postTags("</font>");
        hiBuilder.field("title");
        searchRequestBuilder.highlighter(hiBuilder);
        //获得查询结果数据
        SearchResponse searchResponse = searchRequestBuilder.get();
        //获取查询结果集
        SearchHits searchHits = searchResponse.getHits();
        System.out.println("共搜到:"+searchHits.getTotalHits()+"条结果!");
        //遍历结果
        for(SearchHit hit:searchHits){
            System.out.println("String方式打印文档搜索内容:");
            System.out.println(hit.getSourceAsString());
            System.out.println("Map方式打印高亮内容");
            System.out.println(hit.getHighlightFields());
            System.out.println("遍历高亮集合,打印高亮片段:");
            Text[] text = hit.getHighlightFields().get("title").getFragments();
            for (Text str : text) {
                System.out.println(str);
            }
        }
        //释放资源
        client.close();
    }

 

二、 Spring Data ElasticSearch 使用



2.1 Spring Data ElasticSearch简介



2.1.1 什么是Spring Data


Spring Data是一个用于简化数据库访问,并支持云服务的开源框架。其主要目标是使得对数据的访问变得方便快
捷,并支持map-reduce框架和云计算数据服务。 Spring Data可以极大的简化JPA的写法,可以在几乎不用写实现
的情况下,实现对数据的访问和操作。除了CRUD外,还包括如分页、排序等一些常用的功能。


Spring Data的官网:http://projects.spring.io/spring-data/


Spring Data常用的功能模块如下:



 

2.1.2 什么是Spring Data ElasticSearch


Spring Data ElasticSearch 基于 spring data API 简化 elasticSearch操作,将原始操作elasticSearch的客户端API 进
行封装 。Spring Data为Elasticsearch项目提供集成搜索引擎。Spring Data Elasticsearch POJO的关键功能区域为
中心的模型与Elastichsearch交互文档和轻松地编写一个存储库数据访问层。


官方网站:http://projects.spring.io/spring-data-elasticsearch/

2.2 Spring Data ElasticSearch入门



1)导入Spring Data ElasticSearch坐标

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>
    <groupId>com.wsw</groupId>
    <artifactId>elasticsearch_demo3</artifactId>
    <version>1.0-SNAPSHOT</version>
    <dependencies>
        <dependency>
            <groupId>org.elasticsearch</groupId>
            <artifactId>elasticsearch</artifactId>
            <version>5.6.8</version>
        </dependency>
        <dependency>
            <groupId>org.elasticsearch.client</groupId>
            <artifactId>transport</artifactId>
            <version>5.6.8</version>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-to-slf4j</artifactId>
            <version>2.9.1</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>1.7.24</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-simple</artifactId>
            <version>1.7.21</version>
        </dependency>
        <dependency>
            <groupId>log4j</groupId>
            <artifactId>log4j</artifactId>
            <version>1.2.12</version>
        </dependency>
        <dependency>
            <groupId>junit</groupId>
            <artifactId>junit</artifactId>
            <version>4.12</version>
        </dependency>
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-core</artifactId>
            <version>2.8.1</version>
        </dependency>
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-databind</artifactId>
            <version>2.8.1</version>
        </dependency>
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-annotations</artifactId>
            <version>2.8.1</version>
        </dependency>
        <dependency>
            <groupId>org.springframework.data</groupId>
            <artifactId>spring-data-elasticsearch</artifactId>
            <version>3.0.5.RELEASE</version>
        </dependency>
        <dependency>
            <groupId>org.springframework</groupId>
            <artifactId>spring-test</artifactId>
            <version>5.0.4.RELEASE</version>
        </dependency>
    </dependencies>
</project>




2)创建applicationContext.xml配置文件,引入elasticsearch命名空间
 

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:context="http://www.springframework.org/schema/context"
       xmlns:elasticsearch="http://www.springframework.org/schema/data/elasticsearch"
       xsi:schemaLocation="
       http://www.springframework.org/schema/beans
       http://www.springframework.org/schema/beans/spring-beans.xsd
       http://www.springframework.org/schema/context
       http://www.springframework.org/schema/context/spring-context.xsd
       http://www.springframework.org/schema/data/elasticsearch
       http://www.springframework.org/schema/data/elasticsearch/spring-elasticsearch-1.0.xsd">

</beans>




3)编写实体Article

public class Article {
    private Integer id;
    private String title;
    private String content;
    public Integer getId() {
        return id;
    }
    public void setId(Integer id) {
        this.id = id;
    }
    public String getTitle() {
        return title;
    }
    public void setTitle(String title) {
        this.title = title;
    }
    public String getContent() {
        return content;
    }
    public void setContent(String content) {
        this.content = content;
    }
    @Override
    public String toString() {
        return "Article [id=" + id + ", title=" + title + ", content=" + content + "]";
    }
}


4)编写Dao

import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
public interface ArticleRepository extends ElasticsearchRepository<Article, Integer> {
}


5)编写Service
 

public interface ArticleService {
    public void save(Article article);
}


 

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Service;
@Service
public class ArticleServiceImpl implements ArticleService {
    @Autowired
    private ArticleRepository articleRepository;
    public void save(Article article) {
        articleRepository.save(article);
    }
}


 

6) 配置applicationContext.xml

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:context="http://www.springframework.org/schema/context"
       xmlns:elasticsearch="http://www.springframework.org/schema/data/elasticsearch"
       xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context.xsd
http://www.springframework.org/schema/data/elasticsearch
http://www.springframework.org/schema/data/elasticsearch/spring-elasticsearch-
1.0.xsd
">
    <!-- 扫描Dao包,自动创建实例 -->
    <elasticsearch:repositories base-package="com.wsw.dao"/>
    <!-- 扫描Service包,创建Service的实体 -->
    <context:component-scan base-package="com.wsw.service"/>
    <!-- 配置elasticSearch的连接 -->
    <elasticsearch:transport-client id="client" cluster-nodes="localhost:9300" />
    <!-- spring data elasticSearcheDao 必须继承 ElasticsearchTemplate -->
    <bean id="elasticsearchTemplate"
          class="org.springframework.data.elasticsearch.core.ElasticsearchTemplate">
        <constructor-arg name="client" ref="client"></constructor-arg>
    </bean>
</beans>

7)配置实体

基于spring data elasticsearch注解配置索引、映射和实体的关系

import org.springframework.data.annotation.Id;
import org.springframework.data.elasticsearch.annotations.Document;
import org.springframework.data.elasticsearch.annotations.Field;
import org.springframework.data.elasticsearch.annotations.FieldType;

//@Document 文档对象 (索引信息、文档类型 )
@Document(indexName = "blog3", type = "article")
public class Article {
    //@Id 文档主键 唯一标识
    @Id
    //@Field 每个文档的字段配置(类型、是否分词、是否存储、分词器 )
    @Field(store = true, index = false, type = FieldType.Integer)
    private Integer id;
    @Field(index = true, analyzer = "ik_smart", store = true, searchAnalyzer = "ik_smart", type =
            FieldType.text)
    private String title;
    @Field(index = true, analyzer = "ik_smart", store = true, searchAnalyzer = "ik_smart", type =
            FieldType.text)
    private String content;

    public Integer getId() {
        return id;
    }

    public void setId(Integer id) {
        this.id = id;
    }

    public String getTitle() {
        return title;
    }

    public void setTitle(String title) {
        this.title = title;
    }

    public String getContent() {
        return content;
    }

    public void setContent(String content) {
        this.content = content;
    }

    @Override
    public String toString() {
        return "Article [id=" + id + ", title=" + title + ", content=" + content + "]";
    }
}

其中,注解解释如下:
@Document(indexName="blob3",type="article"):
    indexName:索引的名称(必填项)
    type:索引的类型
@Id:主键的唯一标识
@Field(index=true,analyzer="ik_smart",store=true,searchAnalyzer="ik_smart",type = FieldType.text)
    index:是否设置分词
    analyzer:存储时使用的分词器
    searchAnalyze:搜索时使用的分词器
    store:是否存储
    type: 数据类型


8)创建测试类SpringDataESTest
 

import org.elasticsearch.client.transport.TransportClient;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations="classpath:applicationContext.xml")
public class SpringDataESTest {
    @Autowired
    private ArticleService articleService;
    @Autowired
    private TransportClient client;
    @Autowired
    private ElasticsearchTemplate elasticsearchTemplate;
    /**创建索引和映射*/
    @Test
    public void createIndex(){
        elasticsearchTemplate.createIndex(Article.class);
        elasticsearchTemplate.putMapping(Article.class);
    }
    /**测试保存文档*/
    @Test
    public void saveArticle(){
        Article article = new Article();
        article.setId(100);
        article.setTitle("测试SpringData ElasticSearch");
        article.setContent("Spring Data ElasticSearch 基于 spring data API 简化 elasticSearch操作,将原始操作elasticSearch的客户端API 进行封装 \n" +
                " Spring Data为Elasticsearch Elasticsearch项目提供集成搜索引擎");
        articleService.save(article);
    }
}


2.3 Spring Data ElasticSearch的常用操作



2.3.1 增删改查方法测试

import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
public interface ArticleService {
    //保存
    public void save(Article article);
    //删除
    public void delete(Article article);
    //查询全部
    public Iterable<Article> findAll();
    //分页查询
    public Page<Article> findAll(Pageable pageable);
}
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
import org.springframework.stereotype.Service;
@Service
public class ArticleServiceImpl implements ArticleService {
    @Autowired
    private ArticleRepository articleRepository;
    public void save(Article article) {
        articleRepository.save(article);
    }
    public void delete(Article article) {
        articleRepository.delete(article);
    }
    public Iterable<Article> findAll() {
        Iterable<Article> iter = articleRepository.findAll();
        return iter;
    }
    public Page<Article> findAll(Pageable pageable) {
        return articleRepository.findAll(pageable);
    }
}

 

import org.elasticsearch.client.transport.TransportClient;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations = "classpath:applicationContext.xml")
public class SpringDataESTest {
    @Autowired
    private ArticleService articleService;
    @Autowired
    private TransportClient client;
    @Autowired
    private ElasticsearchTemplate elasticsearchTemplate;

    /**
     * 创建索引和映射
     */
    @Test
    public void createIndex() {
        elasticsearchTemplate.createIndex(Article.class);
        elasticsearchTemplate.putMapping(Article.class);
    }

    /**
     * 测试保存文档
     */
    @Test
    public void saveArticle() {
        Article article = new Article();
        article.setId(100);
        article.setTitle("测试SpringData ElasticSearch");
        article.setContent("Spring Data ElasticSearch 基于 spring data API 简化 elasticSearch操作,将原始操作elasticSearch的客户端API 进行封装 \n" +
                " Spring Data为Elasticsearch Elasticsearch项目提供集成搜索引擎");
        articleService.save(article);
    }

    /**
     * 测试保存
     */
    @Test
    public void save() {
        Article article = new Article();
        article.setId(1001);
        article.setTitle("elasticSearch 3.0版本发布");
        article.setContent("ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户 能力的全文搜索引擎,基于RESTful web接口");
                articleService.save(article);
    }

    /**
     * 测试更新
     */
    @Test
    public void update() {
        Article article = new Article();
        article.setId(1001);
        article.setTitle("elasticSearch 3.0版本发布...更新");
        article.setContent("ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户 能力的全文搜索引擎,基于RESTful web接口");
                articleService.save(article);
    }

    /**
     * 测试删除
     */
    @Test
    public void delete() {
        Article article = new Article();
        article.setId(1001);
        articleService.delete(article);
    }

    /**
     * 批量插入
     */
    @Test
    public void save100() {
        for (int i = 1; i <= 100; i++) {
            Article article = new Article();
            article.setId(i);
            article.setTitle(i + "elasticSearch 3.0版本发布..,更新");
            article.setContent(i + "ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布 式多用户能力的全文搜索引擎,基于RESTful web接口");
            articleService.save(article);
        }
    }

    /**
     * 排序查询
     */
    @Test
    public void findAllSort() {
        Iterable<Article> list = articleService.findAll();
        for (Article article : list) {
            System.out.println(article);
        }
    }

    /**
     * 分页查询
     */
    @Test
    public void findAllPage() {
        Pageable pageable = new PageRequest(0, 10);
        Page<Article> page = articleService.findAll(pageable);
        for (Article article : page.getContent()) {
            System.out.println(article);
        }
    }
}

2.3.2 常用查询命名规则




 

2.3.3 查询方法测试


需求:根据指定标题查询数据
1)dao层实现

import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.repository.ElasticsearchRepository;
import java.util.List;
public interface ArticleRepository extends ElasticsearchRepository<Article, Integer> {
    //根据标题查询
    List<Article> findByTitle(String condition);
    //根据标题查询(含分页)
    Page<Article> findByTitle(String condition, Pageable pageable);
}


2)service层实现

public interface ArticleService {
    //根据标题查询
    List<Article> findByTitle(String condition);
    //根据标题查询(含分页)
    Page<Article> findByTitle(String condition, Pageable pageable);
}
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.Pageable;
import org.springframework.stereotype.Service;
import java.util.List;
@Service
public class ArticleServiceImpl implements ArticleService {
    @Autowired
    private ArticleRepository articleRepository;
    public List<Article> findByTitle(String condition) {
        return articleRepository.findByTitle(condition);
    }

    public Page<Article> findByTitle(String condition, Pageable pageable) {
        return articleRepository.findByTitle(condition,pageable);
    }
}


3)测试代码
 

import org.elasticsearch.client.transport.TransportClient;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.domain.Page;
import org.springframework.data.domain.PageRequest;
import org.springframework.data.domain.Pageable;
import org.springframework.data.elasticsearch.core.ElasticsearchTemplate;
import org.springframework.test.context.ContextConfiguration;
import org.springframework.test.context.junit4.SpringJUnit4ClassRunner;
import java.util.List;
@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(locations="classpath:applicationContext.xml")
public class SpringDataESTest {
    @Autowired
    private ArticleService articleService;
    @Autowired
    private TransportClient client;
    @Autowired
    private ElasticsearchTemplate elasticsearchTemplate;
    /**条件查询*/
    @Test
    public void findByTitle(){
        String condition = "版本";
        List<Article> articleList = articleService.findByTitle(condition);
        for(Article article:articleList){
            System.out.println(article);
        }
    }
    /**条件分页查询*/
    @Test
    public void findByTitlePage(){
        String condition = "版本";
        Pageable pageable = new PageRequest(0, 5);
        Page<Article> page = articleService.findByTitle(condition,pageable);
        for(Article article:page.getContent()){
            System.out.println(article);
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值