python核心编程三

本文详细介绍了Python中的LEGB规则,包括局部、封闭、全局及内置作用域的概念,以及它们在查找符号对应对象时的顺序。此外,还讨论了Python中的赋值、比较操作符、拷贝机制、私有化及内建属性等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作用域
LEGB 规则

Python 使用 LEGB 的顺序来查找一个符号对应的对象

locals -> enclosing function -> globals -> builtins

locals,当前所在命名空间(如函数、模块),函数的参数也属于命名空间内的变量
enclosing,外部嵌套函数的命名空间(闭包中常见)

def fun1():
  a = 10
  def fun2():
      # a 位于外部嵌套函数的命名空间
      print(a)

globals,全局变量,函数定义所在模块的命名空间

a = 1
def fun():
  # 需要通过 global 指令来声明全局变量
  global a
  # 修改全局变量,而不是创建一个新的 local 变量
  a = 2

builtins,内建模块的命名空间。

  Python 在启动的时候会自动为我们载入很多内建的函数、类,
  比如 dict,list,type,print,这些都位于 __builtin__ 模块中,
  可以使用 dir(__builtin__) 来查看。
  这也是为什么我们在没有 import任何模块的情况下,
  就能使用这么多丰富的函数和功能了。

  在Python中,有一个内建模块,该模块中有一些常用函数;在Python启动后,
  且没有执行程序员所写的任何代码前,Python会首先加载该内建函数到内存。
  另外,该内建模块中的功能可以直接使用,不用在其前添加内建模块前缀,
  其原因是对函数、变量、类等标识符的查找是按LEGB法则,其中B即代表内建模块
  比如:内建模块中有一个abs()函数,其功能求绝对值,如abs(-20)将返回20。

=、== 与 is

这里写图片描述

总结

=  是对变量进行赋值
is 是比较两个引用是否指向了同一个对象(引用比较)。
== 是比较两个对象是否相等。

深拷贝、浅拷贝

1. 浅拷贝

浅拷贝是对于一个对象的顶层拷贝

通俗的理解是:拷贝了引用,并没有拷贝内容
这里写图片描述
2. 深拷贝

深拷贝是对于一个对象所有层次的拷贝(递归)

这里写图片描述
私有化

xx: 公有变量
_x: 单前置下划线,私有化属性或方法,from somemodule import *禁止导入,类对象和子类可以访问
__xx:双前置下划线,避免与子类中的属性命名冲突,无法在外部直接访问(名字重整所以访问不到)
__xx__:双前后下划线,用户名字空间的魔法对象或属性。例如:__init__ , __ 不要自己发明这样的名字
xx_:单后置下划线,用于避免与Python关键词的冲突

通过name mangling(名字重整(目的就是以防子类意外重写基类的方法或者属性)如:_Class__object)机制就可以访问private了。

#coding=utf-8
class Person(object):
    def __init__(self, name, age, taste):
        self.name = name
        self._age = age 
        self.__taste = taste

    def showperson(self):
        print(self.name)
        print(self._age)
        print(self.__taste)

    def dowork(self):
        self._work()
        self.__away()

    def _work(self):
        print('my _work')

    def __away(self):
        print('my __away')

class Student(Person):
    def construction(self, name, age, taste):
        self.name = name
        self._age = age 
        self.__taste = taste

    def showstudent(self):
        print(self.name)
        print(self._age)
        print(self.__taste)

    @staticmethod
    def testbug():
        _Bug.showbug()

#模块内可以访问,当from  cur_module import *时,不导入
class _Bug(object):
    @staticmethod
    def showbug():
        print("showbug")

s1 = Student('jack', 25, 'football')
s1.showperson()
print('*'*20)

#无法访问__taste,导致报错
#s1.showstudent() 
s1.construction('rose', 30, 'basketball')
s1.showperson()
print('*'*20)

s1.showstudent()
print('*'*20)   
Student.testbug()

总结

父类中属性名为__名字的,子类不继承,子类不能访问
如果在子类中向__名字赋值,那么会在子类中定义的一个与父类相同名字的属性
_名的变量、函数、类在使用from xxx import *时都不会被导入

内建属性

常用专有属性      说明                触发方式
__init__        构造初始化函数     创建实例后,赋值时使用,在__new__后
__new__         生成实例所需属性        创建实例时
__class__       实例所在的类          实例.__class__
__str__         实例字符串表示,可读性 print(类实例),如没实现,使用repr结果
__repr__        实例字符串表示,准确性 类实例 回车 或者 print(repr(类实例))
__del__         析构                 del删除实例
__dict__        实例自定义属性    vars(实例.__dict__)
__doc__         类文档,子类不继承      help(类或实例)
__getattribute__属性访问拦截器    访问实例属性时
__bases__       类的所有父类构成元素  类名.__bases__

_getattribute_例子:

class Itcast(object):
    def __init__(self,subject1):
        self.subject1 = subject1
        self.subject2 = 'cpp'

    #属性访问时拦截器,打log
    def __getattribute__(self,obj):
        if obj == 'subject1':
            print('log subject1')
            return 'redirect python'
        else:   #测试时注释掉这2行,将找不到subject2
            return object.__getattribute__(self,obj)

    def show(self):
        print('this is Itcast')

s = Itcast("python")
print(s.subject1)
print(s.subject2)

运行结果:

log subject1
redirect python
cpp

_getattribute_的坑

class Person(object):
    def __getattribute__(self,obj):
        print("---test---")
        if obj.startswith("a"):
            return "hahha"
        else:
            return self.test

    def test(self):
        print("heihei")

t.Person()
t.a #返回hahha
t.b #会让程序死掉
    #原因是:当t.b执行时,会调用Person类中定义的__getattribute__方法,但是在这个方法的执行过程中
    #if条件不满足,所以 程序执行else里面的代码,即return self.test  问题就在这,因为return 需要把
    #self.test的值返回,那么首先要获取self.test的值,因为self此时就是t这个对象,所以self.test就是
    #t.test 此时要获取t这个对象的test属性,那么就会跳转到__getattribute__方法去执行,即此时产
    #生了递归调用,由于这个递归过程中 没有判断什么时候推出,所以这个程序会永无休止的运行下去,又因为
    #每次调用函数,就需要保存一些数据,那么随着调用的次数越来越多,最终内存吃光,所以程序 崩溃
    # 注意:以后不要在__getattribute__方法中调用self.xxxx

内建函数

Build-in Function,启动python解释器,输入dir(builtins), 可以看到很多python解释器启动后默认加载的属性和函数,这些函数称之为内建函数, 这些函数因为在编程时使用较多,cpython解释器用c语言实现了这些函数,启动解释器 时默认加载。

这些函数数量众多,不宜记忆,开发时不是都用到的,待用到时再help(function), 查看如何使用,或结合百度查询即可,在这里介绍些常用的内建函数。

range

range(stop) -> list of integers
range(start, stop[, step]) -> list of integers

start:计数从start开始。默认是从0开始。例如range(5)等价于range(0, 5);
stop:到stop结束,但不包括stop.例如:range(0, 5) 是[0, 1, 2, 3, 4]没有5
step:每次跳跃的间距,默认为1。例如:range(0, 5) 等价于 range(0, 5, 1)

python2中range返回列表,python3中range返回一个迭代值。如果想得到列表,可通过list函数

a = range(5)
list(a)

创建列表的另外一种方法

In [21]: testList = [x+2 for x in range(5)]
In [22]: testList
Out[22]: [2, 3, 4, 5, 6]

map函数

map函数会根据提供的函数对指定序列做映射

map(...)
map(function, sequence[, sequence, ...]) -> list

function:是一个函数
sequence:是一个或多个序列,取决于function需要几个参数
返回值是一个list
参数序列中的每一个元素分别调用function函数,返回包含每次function函数返回值的list。

#函数需要一个参数
map(lambda x: x*x, [1, 2, 3])
#结果为:[1, 4, 9]

#函数需要两个参数
map(lambda x, y: x+y, [1, 2, 3], [4, 5, 6])
#结果为:[5, 7, 9]

def f1( x, y ):  
    return (x,y)

l1 = [ 0, 1, 2, 3, 4, 5, 6 ]  
l2 = [ 'Sun', 'M', 'T', 'W', 'T', 'F', 'S' ]
l3 = map( f1, l1, l2 ) 
print(list(l3))
#结果为:[(0, 'Sun'), (1, 'M'), (2, 'T'), (3, 'W'), (4, 'T'), (5, 'F'), (6, 'S')]

filter函数

filter函数会对指定序列执行过滤操作

filter(...)
filter(function or None, sequence) -> list, tuple, or string

Return those items of sequence for which function(item) is true.  If
function is None, return the items that are true.  If sequence is a tuple
or string, return the same type, else return a list.

function:接受一个参数,返回布尔值True或False
sequence:序列可以是str,tuple,list
filter函数会对序列参数sequence中的每个元素调用function函数,最后返回的结果包含调用结果为True的元素。

返回值的类型和参数sequence的类型相同

filter(lambda x: x%2, [1, 2, 3, 4])
[1, 3]

filter(None, "she")
'she'

reduce函数

reduce函数,reduce函数会对参数序列中元素进行累积

reduce(...)
reduce(function, sequence[, initial]) -> value

Apply a function of two arguments cumulatively to the items of a sequence,
from left to right, so as to reduce the sequence to a single value.
For example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5]) calculates
((((1+2)+3)+4)+5).  If initial is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty.

function:该函数有两个参数
sequence:序列可以是str,tuple,list
initial:固定初始值
reduce依次从sequence中取一个元素,和上一次调用function的结果做参数再次调用function。 第一次调用function时,如果提供initial参数,会以sequence中的第一个元素和initial 作为参数调用function,否则会以序列sequence中的前两个元素做参数调用function。 注意function函数不能为None。

reduce(lambda x, y: x+y, [1,2,3,4])
10

reduce(lambda x, y: x+y, [1,2,3,4], 5)
15

reduce(lambda x, y: x+y, ['aa', 'bb', 'cc'], 'dd')
'ddaabbcc'

在Python3里,reduce函数已经被从全局名字空间里移除了, 它现在被放置在fucntools模块里用的话要先引入: from functools import reduce

sorted函数

sorted(...)
sorted(iterable, cmp=None, key=None, reverse=False) --> new sorted list

这里写图片描述

集合set

集合与之前列表、元组类似,可以存储多个数据,但是这些数据是不重复的。集合对象还支持union(联合), intersection(交), difference(差)和sysmmetric_difference(对称差集)等数学运算.

>>> x = set('abcd')
>>> x
{'c', 'a', 'b', 'd'}
>>> type(x)
<class 'set'>
>>> 
>>> 
>>> y = set(['h','e','l','l','o'])
>>> y
{'h', 'e', 'o', 'l'}
>>> 
>>> 
>>> z = set('spam')
>>> z
{'s', 'a', 'm', 'p'}
>>> 
>>> 
>>> y&z #交集
set()
>>> 
>>> 
>>> x&z #交集
{'a'}
>>> 
>>> 
>>> x|y #并集
{'a', 'e', 'd', 'l', 'c', 'h', 'o', 'b'}
>>> 
>>> x-y #差集
{'c', 'a', 'b', 'd'}
>>> 
>>> 
>>> x^z #对称差集(在x或z中,但不会同时出现在二者中)
{'m', 'd', 's', 'c', 'b', 'p'}
>>> 
>>> 
>>> len(x)
4
>>> len(y)
4
>>> len(z)
4
>>>
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值