动如脱兔o_O静如脱兔
码龄9年
求更新 关注
提问 私信
  • 博客:14,720
    14,720
    总访问量
  • 11
    原创
  • 36
    粉丝
  • 32
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2016-11-12
博客简介:

静如脱兔(⋌▀¯▀)=☞动如脱兔的博客

博客描述:
博主又皮又懒,什么都没有留下
查看详细资料
个人成就
  • 获得52次点赞
  • 内容获得6次评论
  • 获得94次收藏
  • 博客总排名207,714名
  • 原力等级
    原力等级
    1
    原力分
    60
    本月获得
    0
创作历程
  • 2篇
    2024年
  • 2篇
    2022年
  • 1篇
    2021年
  • 7篇
    2020年
成就勋章
TA的专栏
  • Multimodal
    2篇
  • Agent
    1篇
  • 图文匹配
    2篇
  • 弱监督语义分割
    7篇

TA关注的专栏 0

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理
创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

50人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

【论文笔记】VITA: Towards Open-Source Interactive Omni Multimodal LLM

VITA,一个率先打入多模态交互领域的开源大模型,在应用落地和用户体验的方面提供了很多借鉴。
原创
发布博客 2024.09.18 ·
1188 阅读 ·
28 点赞 ·
1 评论 ·
22 收藏

【论文笔记】General OCR Theory: Towards OCR-2.0 via a Unified End-to-end Model

General OCR Theroty: Towards OCR-2.0 via a Unified End-to-end Model,一个580M参数量,端到端多场景适用的OCR模型,可作为Agent供大模型调用
原创
发布博客 2024.09.13 ·
1202 阅读 ·
11 点赞 ·
1 评论 ·
31 收藏

Grounded Language-Image Pre-training

跨模态大模型GLIP
原创
发布博客 2022.11.22 ·
830 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

【CAMP论文笔记】CAMP: Cross-Modal Adaptive Message Passing for Text-Image Retrieval

CAMP: Cross-Modal Adaptive Message Passing for Text-Image Retrieval 着重于细粒度的跨模态信息交互融合,并且自适应地控制信息融合的程度,在MSCOCO和Flickr30k数据集上效果显著
原创
发布博客 2022.10.18 ·
931 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

时间复杂度和空间复杂度计算

时间复杂度和空间复杂度计算定义时间复杂度常见的时间复杂度量级常数阶 O(1)O(1)O(1)对数阶 O(logN)O(logN)O(logN)线性阶O(n)O(n)O(n)线性对数阶O(logN)O(logN)O(logN)平方阶O(n²)O(n²)O(n²)空间复杂度O(1)O(1)O(1)O(n)O(n)O(n)定义不同算法消耗的资源和时间会有很大区别,一般会从时间和空间两个维度去考量。1.时间维度执行当前算法所消耗的时间,通常用时间复杂度来描述2.空间维度执行当前算法需要占用多少内存空间,
转载
发布博客 2021.07.25 ·
425 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

报告_kmeans.pdf

发布资源 2020.07.11 ·
pdf

报告_期望最大值算法EM.pdf

发布资源 2020.07.10 ·
pdf

paper分类梳理.zip

发布资源 2020.07.10 ·
zip

[论文笔记]FickleNet

FickleNet论文笔记—FickleNet: Weakly and Semi-supervised Semantic Image Segmentation using Stochastic InferenceAbstractIntroductionContributionRelated WorkProposed MethodExperiments二级目录三级目录Abstract大多数基于图像级标注的语义分割方法都采用分类器生成定位映射的方法,但这些定位映射仅聚焦于small discriminati
原创
发布博客 2020.05.25 ·
727 阅读 ·
0 点赞 ·
2 评论 ·
1 收藏

[论文笔记]Coarse-to-fine Semantic Segmentation from Image-level Labels

DFPN论文笔记:Coarse-to-fine Semantic Segmentation from Image-level LabelsAbstractIntroductionContributionRelated WorkProposed Approach方法概述生成coarse maskcoarse mask增强mask迭代优化扩展应用ExperimentsAbstract为减轻人工标注的压力,本文提出一种仅含图像级标签的迭代的coarse-to-fine(由粗到细)的语义分割框架首先通过CNN
原创
发布博客 2020.05.24 ·
2034 阅读 ·
1 点赞 ·
0 评论 ·
7 收藏

[论文笔记]AffinityNet

PSA论文笔记(Learning Pixel-level Semantic Affinity with Image-level Supervisionfor Weakly Supervised Semantic Segmentation)AbstractIntroduction二级目录三级目录for Weakly Supervised Semantic Segmentation))AbstractIntroduction二级目录三级目录...
原创
发布博客 2020.05.22 ·
4236 阅读 ·
8 点赞 ·
0 评论 ·
22 收藏

[论文笔记]Revisiting Dilated Convolution

MDC论文笔记(Revisiting Dilated Convolution: A Simple Approach for Weakly- and Semi- Supervised Semantic Segmentation)AbstractIntroductionChallengeTop-down approaches本文提出的方法ContributionRelated WorkProposed MethodDilated ConvolutionMulti-dilated Convolution for
原创
发布博客 2020.05.17 ·
1028 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

[论文笔记]STC: A Simple to Complex Framework

STC论文笔记AbstractIntroduction挑战性问题显著性目标检测方法文章切入点本文提出的Simple to Complex框架ContributionRelated Work弱监督语义分割自步学习:每次迭代自动选择训练样本Proposed Method框架过程ExperimentsAbstract两个分割网络Initial-DCNN(显著性映射)和Enhanced-DCNN(预测分割mask)Introduction挑战性问题high intra-class variation(类
原创
发布博客 2020.05.17 ·
757 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

[论文笔记]Seed,Expend and Constrain

SEC论文笔记AbstractIntroductionRelated Work方法概述比较Proposed Method损失函数Experiments二级目录三级目录Abstract基于三个指导原则提出新的损失函数(1) 将较弱的定位线索作为种子(2) 基于图像中的类别信息扩展目标区域(3) 根据目标轮廓限制分割预测的边界通过对比试验进一步指出所提损失函数对分割性能的影响以及今后工作的一些切入点Introduction文章按如下3个切入点来设计混合的损失函数:分类网络如VGG、Ale
原创
发布博客 2020.05.16 ·
341 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

[论文笔记]Object Region Mining with Adversarial Erasing

AE-PSL论文笔记AbstractIntroduction难点方法概述本文提出的Adversarial erasing(AE)方法ContributionRelated WorkProposed Method框架Object Region Mining with AEonline PSL for semantic segmentationExperiments之前写的一些笔记,可能有些观点参考过其他博主,欢迎认领,侵删,转载请注明出处,谢谢Abstract提出一种对抗擦除的方法定位目标区域为了提
原创
发布博客 2020.05.16 ·
966 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏
加载更多