PCL 删除点云中重叠的点(方法一)【2024最新版】

262 篇文章 ¥19.90 ¥99.00
本文介绍了使用PCL库去除3D点云中重叠点的算法原理,通过设定距离阈值来判断并删除重复点。文章包含详细代码实现,展示了处理后的效果,并提到了CloudCompare软件进行比较验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


博客长期更新,本文最近一次更新时间为:2024年12月9日。① 优化代码结构和原理介绍;② 代码在PCL1.14.1上运行成功。

一、算法原理

  如图所示,红色为点云的重叠区域。
在这里插入图片描述

若某一点在某一距离阈值领域内不止其本身一个点,则认为其有重复点。

二、代码实现

#include <iostream>
#include
pcl库(Point Cloud Library)是个用于点云处理的开源库,提供了丰富的点云处理算法。要快速删除点云重叠,可以通过以下步骤实现。 首先,加载点云数据并创建个新的点云对象,用于存储去除重叠后的结果。接着,遍历原始点云中的每个,将其坐标转换为字符串,并以此作为键值存储到个哈希表中。这样可以将相同坐标的合并为个键,并且快速检查是否存在重叠。 在遍历原始点云时,检查哈希表中是否存在相同坐标的。如果存在,则表明该重叠,不需要添加到新的点云对象中。如果不存在,则将该添加到新的点云对象中。 最后,保存新的点云对象并释放资源。 下面是示例代码: ```cpp #include <pcl/io/pcd_io.h> #include <pcl/point_cloud.h> #include <pcl/point_types.h> #include <unordered_map> typedef pcl::PointXYZ PointT; typedef pcl::PointCloud<PointT> PointCloudT; int main() { // 加载点云数据 PointCloudT::Ptr cloud(new PointCloudT); pcl::io::loadPCDFile("input_cloud.pcd", *cloud); // 创建新的点云对象 PointCloudT::Ptr filtered_cloud(new PointCloudT); // 哈希表存储点云坐标 std::unordered_map<std::string, size_t> hash_table; // 遍历原始点云 for (size_t i = 0; i < cloud->points.size(); ++i) { // 将点云坐标转换为字符串 std::string key = std::to_string(cloud->points[i].x) + "," + std::to_string(cloud->points[i].y) + "," + std::to_string(cloud->points[i].z); // 检查是否存在重叠 if (hash_table.count(key) == 0) { // 不存在重叠,添加到新的点云对象中 filtered_cloud->points.push_back(cloud->points[i]); // 添加到哈希表 hash_table[key] = i; } } // 保存新的点云结果 pcl::io::savePCDFile("filtered_cloud.pcd", *filtered_cloud); return 0; } ``` 通过以上步骤,可以快速删除点云中的重叠,得到没有重叠点云结果。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值